@inproceedings{s-antony-2022-ssn,
title = "{SSN}@{LT}-{EDI}-{ACL}2022: Transfer Learning using {BERT} for Detecting Signs of Depression from Social Media Texts",
author = "S, Adarsh and
Antony, Betina",
editor = "Chakravarthi, Bharathi Raja and
Bharathi, B and
McCrae, John P and
Zarrouk, Manel and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ltedi-1.50/",
doi = "10.18653/v1/2022.ltedi-1.50",
pages = "326--330",
abstract = "Depression is one of the most common mentalissues faced by people. Detecting signs ofdepression early on can help in the treatmentand prevention of extreme outcomes like suicide. Since the advent of the internet, peoplehave felt more comfortable discussing topicslike depression online due to the anonymityit provides. This shared task has used datascraped from various social media sites andaims to develop models that detect signs andthe severity of depression effectively. In thispaper, we employ transfer learning by applyingenhanced BERT model trained for Wikipediadataset to the social media text and performtext classification. The model gives a F1-scoreof 63.8{\%} which was reasonably better than theother competing models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="s-antony-2022-ssn">
<titleInfo>
<title>SSN@LT-EDI-ACL2022: Transfer Learning using BERT for Detecting Signs of Depression from Social Media Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adarsh</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Betina</namePart>
<namePart type="family">Antony</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Bharathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Depression is one of the most common mentalissues faced by people. Detecting signs ofdepression early on can help in the treatmentand prevention of extreme outcomes like suicide. Since the advent of the internet, peoplehave felt more comfortable discussing topicslike depression online due to the anonymityit provides. This shared task has used datascraped from various social media sites andaims to develop models that detect signs andthe severity of depression effectively. In thispaper, we employ transfer learning by applyingenhanced BERT model trained for Wikipediadataset to the social media text and performtext classification. The model gives a F1-scoreof 63.8% which was reasonably better than theother competing models.</abstract>
<identifier type="citekey">s-antony-2022-ssn</identifier>
<identifier type="doi">10.18653/v1/2022.ltedi-1.50</identifier>
<location>
<url>https://aclanthology.org/2022.ltedi-1.50/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>326</start>
<end>330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SSN@LT-EDI-ACL2022: Transfer Learning using BERT for Detecting Signs of Depression from Social Media Texts
%A S, Adarsh
%A Antony, Betina
%Y Chakravarthi, Bharathi Raja
%Y Bharathi, B.
%Y McCrae, John P.
%Y Zarrouk, Manel
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F s-antony-2022-ssn
%X Depression is one of the most common mentalissues faced by people. Detecting signs ofdepression early on can help in the treatmentand prevention of extreme outcomes like suicide. Since the advent of the internet, peoplehave felt more comfortable discussing topicslike depression online due to the anonymityit provides. This shared task has used datascraped from various social media sites andaims to develop models that detect signs andthe severity of depression effectively. In thispaper, we employ transfer learning by applyingenhanced BERT model trained for Wikipediadataset to the social media text and performtext classification. The model gives a F1-scoreof 63.8% which was reasonably better than theother competing models.
%R 10.18653/v1/2022.ltedi-1.50
%U https://aclanthology.org/2022.ltedi-1.50/
%U https://doi.org/10.18653/v1/2022.ltedi-1.50
%P 326-330
Markdown (Informal)
[SSN@LT-EDI-ACL2022: Transfer Learning using BERT for Detecting Signs of Depression from Social Media Texts](https://aclanthology.org/2022.ltedi-1.50/) (S & Antony, LTEDI 2022)
ACL