@inproceedings{ozturk-etal-2022-enhancing,
title = "Enhancing the {PARSEME} {T}urkish Corpus of Verbal Multiword Expressions",
author = "Ozturk, Yagmur and
Hadj Mohamed, Najet and
Lion-Bouton, Adam and
Savary, Agata",
editor = "Bhatia, Archna and
Cook, Paul and
Taslimipoor, Shiva and
Garcia, Marcos and
Ramisch, Carlos",
booktitle = "Proceedings of the 18th Workshop on Multiword Expressions @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.mwe-1.14",
pages = "100--104",
abstract = "The PARSEME (Parsing and Multiword Expressions) project proposes multilingual corpora annotated for multiword expressions (MWEs). In this case study, we focus on the Turkish corpus of PARSEME. Turkish is an agglutinative language and shows high inflection and derivation in word forms. This can cause some issues in terms of automatic morphosyntactic annotation. We provide an overview of the problems observed in the morphosyntactic annotation of the Turkish PARSEME corpus. These issues are mostly observed on the lemmas, which is important for the approximation of a type of an MWE. We propose modifications of the original corpus with some enhancements on the lemmas and parts of speech. The enhancements are then evaluated with an identification system from the PARSEME Shared Task 1.2 to detect MWEs, namely Seen2Seen. Results show increase in the F-measure for MWE identification, emphasizing the necessity of robust morphosyntactic annotation for MWE processing, especially for languages that show high surface variability.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ozturk-etal-2022-enhancing">
<titleInfo>
<title>Enhancing the PARSEME Turkish Corpus of Verbal Multiword Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yagmur</namePart>
<namePart type="family">Ozturk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Najet</namePart>
<namePart type="family">Hadj Mohamed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Lion-Bouton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Workshop on Multiword Expressions @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Archna</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The PARSEME (Parsing and Multiword Expressions) project proposes multilingual corpora annotated for multiword expressions (MWEs). In this case study, we focus on the Turkish corpus of PARSEME. Turkish is an agglutinative language and shows high inflection and derivation in word forms. This can cause some issues in terms of automatic morphosyntactic annotation. We provide an overview of the problems observed in the morphosyntactic annotation of the Turkish PARSEME corpus. These issues are mostly observed on the lemmas, which is important for the approximation of a type of an MWE. We propose modifications of the original corpus with some enhancements on the lemmas and parts of speech. The enhancements are then evaluated with an identification system from the PARSEME Shared Task 1.2 to detect MWEs, namely Seen2Seen. Results show increase in the F-measure for MWE identification, emphasizing the necessity of robust morphosyntactic annotation for MWE processing, especially for languages that show high surface variability.</abstract>
<identifier type="citekey">ozturk-etal-2022-enhancing</identifier>
<location>
<url>https://aclanthology.org/2022.mwe-1.14</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>100</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing the PARSEME Turkish Corpus of Verbal Multiword Expressions
%A Ozturk, Yagmur
%A Hadj Mohamed, Najet
%A Lion-Bouton, Adam
%A Savary, Agata
%Y Bhatia, Archna
%Y Cook, Paul
%Y Taslimipoor, Shiva
%Y Garcia, Marcos
%Y Ramisch, Carlos
%S Proceedings of the 18th Workshop on Multiword Expressions @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F ozturk-etal-2022-enhancing
%X The PARSEME (Parsing and Multiword Expressions) project proposes multilingual corpora annotated for multiword expressions (MWEs). In this case study, we focus on the Turkish corpus of PARSEME. Turkish is an agglutinative language and shows high inflection and derivation in word forms. This can cause some issues in terms of automatic morphosyntactic annotation. We provide an overview of the problems observed in the morphosyntactic annotation of the Turkish PARSEME corpus. These issues are mostly observed on the lemmas, which is important for the approximation of a type of an MWE. We propose modifications of the original corpus with some enhancements on the lemmas and parts of speech. The enhancements are then evaluated with an identification system from the PARSEME Shared Task 1.2 to detect MWEs, namely Seen2Seen. Results show increase in the F-measure for MWE identification, emphasizing the necessity of robust morphosyntactic annotation for MWE processing, especially for languages that show high surface variability.
%U https://aclanthology.org/2022.mwe-1.14
%P 100-104
Markdown (Informal)
[Enhancing the PARSEME Turkish Corpus of Verbal Multiword Expressions](https://aclanthology.org/2022.mwe-1.14) (Ozturk et al., MWE 2022)
ACL