@inproceedings{taslimipoor-etal-2022-improving,
title = "Improving Grammatical Error Correction for Multiword Expressions",
author = "Taslimipoor, Shiva and
Bryant, Christopher and
Yuan, Zheng",
editor = "Bhatia, Archna and
Cook, Paul and
Taslimipoor, Shiva and
Garcia, Marcos and
Ramisch, Carlos",
booktitle = "Proceedings of the 18th Workshop on Multiword Expressions @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.mwe-1.4",
pages = "9--15",
abstract = "Grammatical error correction (GEC) is the task of automatically correcting errors in text. It has mainly been developed to assist language learning, but can also be applied to native text. This paper reports on preliminary work in improving GEC for multiword expression (MWE) error correction. We propose two systems which incorporate MWE information in two different ways: one is a multi-encoder decoder system which encodes MWE tags in a second encoder, and the other is a BART pre-trained transformer-based system that encodes MWE representations using special tokens. We show improvements in correcting specific types of verbal MWEs based on a modified version of a standard GEC evaluation approach.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="taslimipoor-etal-2022-improving">
<titleInfo>
<title>Improving Grammatical Error Correction for Multiword Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Bryant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Workshop on Multiword Expressions @LREC2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Archna</namePart>
<namePart type="family">Bhatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiva</namePart>
<namePart type="family">Taslimipoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Grammatical error correction (GEC) is the task of automatically correcting errors in text. It has mainly been developed to assist language learning, but can also be applied to native text. This paper reports on preliminary work in improving GEC for multiword expression (MWE) error correction. We propose two systems which incorporate MWE information in two different ways: one is a multi-encoder decoder system which encodes MWE tags in a second encoder, and the other is a BART pre-trained transformer-based system that encodes MWE representations using special tokens. We show improvements in correcting specific types of verbal MWEs based on a modified version of a standard GEC evaluation approach.</abstract>
<identifier type="citekey">taslimipoor-etal-2022-improving</identifier>
<location>
<url>https://aclanthology.org/2022.mwe-1.4</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>9</start>
<end>15</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Grammatical Error Correction for Multiword Expressions
%A Taslimipoor, Shiva
%A Bryant, Christopher
%A Yuan, Zheng
%Y Bhatia, Archna
%Y Cook, Paul
%Y Taslimipoor, Shiva
%Y Garcia, Marcos
%Y Ramisch, Carlos
%S Proceedings of the 18th Workshop on Multiword Expressions @LREC2022
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F taslimipoor-etal-2022-improving
%X Grammatical error correction (GEC) is the task of automatically correcting errors in text. It has mainly been developed to assist language learning, but can also be applied to native text. This paper reports on preliminary work in improving GEC for multiword expression (MWE) error correction. We propose two systems which incorporate MWE information in two different ways: one is a multi-encoder decoder system which encodes MWE tags in a second encoder, and the other is a BART pre-trained transformer-based system that encodes MWE representations using special tokens. We show improvements in correcting specific types of verbal MWEs based on a modified version of a standard GEC evaluation approach.
%U https://aclanthology.org/2022.mwe-1.4
%P 9-15
Markdown (Informal)
[Improving Grammatical Error Correction for Multiword Expressions](https://aclanthology.org/2022.mwe-1.4) (Taslimipoor et al., MWE 2022)
ACL