@inproceedings{abrams-scheutz-2022-social,
title = "Social Norms Guide Reference Resolution",
author = "Abrams, Mitchell and
Scheutz, Matthias",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.1",
doi = "10.18653/v1/2022.naacl-main.1",
pages = "1--11",
abstract = "Humans use natural language, vision, and context to resolve referents in their environment. While some situated reference resolution is trivial, ambiguous cases arise when the language is underspecified or there are multiple candidate referents. This study investigates howpragmatic modulators external to the linguistic content are critical for the correct interpretation of referents in these scenarios. Inparticular, we demonstrate in a human subjects experiment how the social norms applicable in the given context influence theinterpretation of referring expressions. Additionally, we highlight how current coreference tools in natural language processing fail tohandle these ambiguous cases. We also briefly discuss the implications of this work for assistive robots which will routinely need to resolve referents in their environment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abrams-scheutz-2022-social">
<titleInfo>
<title>Social Norms Guide Reference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mitchell</namePart>
<namePart type="family">Abrams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Scheutz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Humans use natural language, vision, and context to resolve referents in their environment. While some situated reference resolution is trivial, ambiguous cases arise when the language is underspecified or there are multiple candidate referents. This study investigates howpragmatic modulators external to the linguistic content are critical for the correct interpretation of referents in these scenarios. Inparticular, we demonstrate in a human subjects experiment how the social norms applicable in the given context influence theinterpretation of referring expressions. Additionally, we highlight how current coreference tools in natural language processing fail tohandle these ambiguous cases. We also briefly discuss the implications of this work for assistive robots which will routinely need to resolve referents in their environment.</abstract>
<identifier type="citekey">abrams-scheutz-2022-social</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.1</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.1</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Social Norms Guide Reference Resolution
%A Abrams, Mitchell
%A Scheutz, Matthias
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F abrams-scheutz-2022-social
%X Humans use natural language, vision, and context to resolve referents in their environment. While some situated reference resolution is trivial, ambiguous cases arise when the language is underspecified or there are multiple candidate referents. This study investigates howpragmatic modulators external to the linguistic content are critical for the correct interpretation of referents in these scenarios. Inparticular, we demonstrate in a human subjects experiment how the social norms applicable in the given context influence theinterpretation of referring expressions. Additionally, we highlight how current coreference tools in natural language processing fail tohandle these ambiguous cases. We also briefly discuss the implications of this work for assistive robots which will routinely need to resolve referents in their environment.
%R 10.18653/v1/2022.naacl-main.1
%U https://aclanthology.org/2022.naacl-main.1
%U https://doi.org/10.18653/v1/2022.naacl-main.1
%P 1-11
Markdown (Informal)
[Social Norms Guide Reference Resolution](https://aclanthology.org/2022.naacl-main.1) (Abrams & Scheutz, NAACL 2022)
ACL
- Mitchell Abrams and Matthias Scheutz. 2022. Social Norms Guide Reference Resolution. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1–11, Seattle, United States. Association for Computational Linguistics.