@inproceedings{mireshghallah-etal-2022-useridentifier,
title = "{U}ser{I}dentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis",
author = "Mireshghallah, Fatemehsadat and
Shrivastava, Vaishnavi and
Shokouhi, Milad and
Berg-Kirkpatrick, Taylor and
Sim, Robert and
Dimitriadis, Dimitrios",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.252",
doi = "10.18653/v1/2022.naacl-main.252",
pages = "3449--3456",
abstract = "Global models are typically trained to be as generalizable as possible. Invariance to the specific user is considered desirable since models are shared across multitudes of users. However, these models are often unable to produce personalized responses for individual users, based on their data. Contrary to widely-used personalization techniques based on few-shot and meta-learning, we propose UserIdentifier, a novel scheme for training a single shared model for all users. Our approach produces personalized responses by prepending a fixed, user-specific non-trainable string (called {``}user identifier{''}) to each user{'}s input text. Unlike prior work, this method doesn{'}t need any additional model parameters, any extra rounds of personal few-shot learning or any change made to the vocabulary. We empirically study different types of user identifiers (numeric, alphanumeric, and also randomly generated) and demonstrate that, surprisingly, randomly generated user identifiers outperform the prefix-tuning based state-of-the-art approach by up to 13, on a suite of sentiment analysis datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mireshghallah-etal-2022-useridentifier">
<titleInfo>
<title>UserIdentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fatemehsadat</namePart>
<namePart type="family">Mireshghallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vaishnavi</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Shokouhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taylor</namePart>
<namePart type="family">Berg-Kirkpatrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Sim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitrios</namePart>
<namePart type="family">Dimitriadis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Global models are typically trained to be as generalizable as possible. Invariance to the specific user is considered desirable since models are shared across multitudes of users. However, these models are often unable to produce personalized responses for individual users, based on their data. Contrary to widely-used personalization techniques based on few-shot and meta-learning, we propose UserIdentifier, a novel scheme for training a single shared model for all users. Our approach produces personalized responses by prepending a fixed, user-specific non-trainable string (called “user identifier”) to each user’s input text. Unlike prior work, this method doesn’t need any additional model parameters, any extra rounds of personal few-shot learning or any change made to the vocabulary. We empirically study different types of user identifiers (numeric, alphanumeric, and also randomly generated) and demonstrate that, surprisingly, randomly generated user identifiers outperform the prefix-tuning based state-of-the-art approach by up to 13, on a suite of sentiment analysis datasets.</abstract>
<identifier type="citekey">mireshghallah-etal-2022-useridentifier</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.252</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.252</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>3449</start>
<end>3456</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UserIdentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis
%A Mireshghallah, Fatemehsadat
%A Shrivastava, Vaishnavi
%A Shokouhi, Milad
%A Berg-Kirkpatrick, Taylor
%A Sim, Robert
%A Dimitriadis, Dimitrios
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F mireshghallah-etal-2022-useridentifier
%X Global models are typically trained to be as generalizable as possible. Invariance to the specific user is considered desirable since models are shared across multitudes of users. However, these models are often unable to produce personalized responses for individual users, based on their data. Contrary to widely-used personalization techniques based on few-shot and meta-learning, we propose UserIdentifier, a novel scheme for training a single shared model for all users. Our approach produces personalized responses by prepending a fixed, user-specific non-trainable string (called “user identifier”) to each user’s input text. Unlike prior work, this method doesn’t need any additional model parameters, any extra rounds of personal few-shot learning or any change made to the vocabulary. We empirically study different types of user identifiers (numeric, alphanumeric, and also randomly generated) and demonstrate that, surprisingly, randomly generated user identifiers outperform the prefix-tuning based state-of-the-art approach by up to 13, on a suite of sentiment analysis datasets.
%R 10.18653/v1/2022.naacl-main.252
%U https://aclanthology.org/2022.naacl-main.252
%U https://doi.org/10.18653/v1/2022.naacl-main.252
%P 3449-3456
Markdown (Informal)
[UserIdentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis](https://aclanthology.org/2022.naacl-main.252) (Mireshghallah et al., NAACL 2022)
ACL