@inproceedings{lin-2022-leveraging,
title = "Leveraging World Knowledge in Implicit Hate Speech Detection",
author = "Lin, Jessica",
editor = "Biester, Laura and
Demszky, Dorottya and
Jin, Zhijing and
Sachan, Mrinmaya and
Tetreault, Joel and
Wilson, Steven and
Xiao, Lu and
Zhao, Jieyu",
booktitle = "Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.nlp4pi-1.4",
doi = "10.18653/v1/2022.nlp4pi-1.4",
pages = "31--39",
abstract = "While much attention has been paid to identifying explicit hate speech, implicit hateful expressions that are disguised in coded or indirect language are pervasive and remain a major challenge for existing hate speech detection systems. This paper presents the first attempt to apply Entity Linking (EL) techniques to both explicit and implicit hate speech detection, where we show that such real world knowledge about entity mentions in a text does help models better detect hate speech, and the benefit of adding it into the model is more pronounced when explicit entity triggers (e.g., rally, KKK) are present. We also discuss cases where real world knowledge does not add value to hate speech detection, which provides more insights into understanding and modeling the subtleties of hate speech.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-2022-leveraging">
<titleInfo>
<title>Leveraging World Knowledge in Implicit Hate Speech Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Biester</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dorottya</namePart>
<namePart type="family">Demszky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mrinmaya</namePart>
<namePart type="family">Sachan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Wilson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jieyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While much attention has been paid to identifying explicit hate speech, implicit hateful expressions that are disguised in coded or indirect language are pervasive and remain a major challenge for existing hate speech detection systems. This paper presents the first attempt to apply Entity Linking (EL) techniques to both explicit and implicit hate speech detection, where we show that such real world knowledge about entity mentions in a text does help models better detect hate speech, and the benefit of adding it into the model is more pronounced when explicit entity triggers (e.g., rally, KKK) are present. We also discuss cases where real world knowledge does not add value to hate speech detection, which provides more insights into understanding and modeling the subtleties of hate speech.</abstract>
<identifier type="citekey">lin-2022-leveraging</identifier>
<identifier type="doi">10.18653/v1/2022.nlp4pi-1.4</identifier>
<location>
<url>https://aclanthology.org/2022.nlp4pi-1.4</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>31</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging World Knowledge in Implicit Hate Speech Detection
%A Lin, Jessica
%Y Biester, Laura
%Y Demszky, Dorottya
%Y Jin, Zhijing
%Y Sachan, Mrinmaya
%Y Tetreault, Joel
%Y Wilson, Steven
%Y Xiao, Lu
%Y Zhao, Jieyu
%S Proceedings of the Second Workshop on NLP for Positive Impact (NLP4PI)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F lin-2022-leveraging
%X While much attention has been paid to identifying explicit hate speech, implicit hateful expressions that are disguised in coded or indirect language are pervasive and remain a major challenge for existing hate speech detection systems. This paper presents the first attempt to apply Entity Linking (EL) techniques to both explicit and implicit hate speech detection, where we show that such real world knowledge about entity mentions in a text does help models better detect hate speech, and the benefit of adding it into the model is more pronounced when explicit entity triggers (e.g., rally, KKK) are present. We also discuss cases where real world knowledge does not add value to hate speech detection, which provides more insights into understanding and modeling the subtleties of hate speech.
%R 10.18653/v1/2022.nlp4pi-1.4
%U https://aclanthology.org/2022.nlp4pi-1.4
%U https://doi.org/10.18653/v1/2022.nlp4pi-1.4
%P 31-39
Markdown (Informal)
[Leveraging World Knowledge in Implicit Hate Speech Detection](https://aclanthology.org/2022.nlp4pi-1.4) (Lin, NLP4PI 2022)
ACL