@inproceedings{van-heusden-etal-2022-entity,
title = "Entity Linking in the {P}arla{M}int Corpus",
author = "van Heusden, Ruben and
Marx, Maarten and
Kamps, Jaap",
editor = "Fi{\v{s}}er, Darja and
Eskevich, Maria and
Lenardi{\v{c}}, Jakob and
de Jong, Franciska",
booktitle = "Proceedings of the Workshop ParlaCLARIN III within the 13th Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.parlaclarin-1.8",
pages = "47--55",
abstract = "The ParlaMint corpus is a multilingual corpus consisting of the parliamentary debates of seventeen European countries over a span of roughly five years. The automatically annotated versions of these corpora provide us with a wealth of linguistic information, including Named Entities. In order to further increase the research opportunities that can be created with this corpus, the linking of Named Entities to a knowledge base is a crucial step. If this can be done successfully and accurately, a lot of additional information can be gathered from the entities, such as political stance and party affiliation, not only within countries but also between the parliaments of different countries. However, due to the nature of the ParlaMint dataset, this entity linking task is challenging. In this paper, we investigate the task of linking entities from ParlaMint in different languages to a knowledge base, and evaluating the performance of three entity linking methods. We will be using DBPedia spotlight, WikiData and YAGO as the entity linking tools, and evaluate them on local politicians from several countries. We discuss two problems that arise with the entity linking in the ParlaMint corpus, namely inflection, and aliasing or the existence of name variants in text. This paper provides a first baseline on entity linking performance on multiple multilingual parliamentary debates, describes the problems that occur when attempting to link entities in ParlaMint, and makes a first attempt at tackling the aforementioned problems with existing methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-heusden-etal-2022-entity">
<titleInfo>
<title>Entity Linking in the ParlaMint Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruben</namePart>
<namePart type="family">van Heusden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">Marx</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaap</namePart>
<namePart type="family">Kamps</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop ParlaCLARIN III within the 13th Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Darja</namePart>
<namePart type="family">Fišer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Eskevich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakob</namePart>
<namePart type="family">Lenardič</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franciska</namePart>
<namePart type="family">de Jong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The ParlaMint corpus is a multilingual corpus consisting of the parliamentary debates of seventeen European countries over a span of roughly five years. The automatically annotated versions of these corpora provide us with a wealth of linguistic information, including Named Entities. In order to further increase the research opportunities that can be created with this corpus, the linking of Named Entities to a knowledge base is a crucial step. If this can be done successfully and accurately, a lot of additional information can be gathered from the entities, such as political stance and party affiliation, not only within countries but also between the parliaments of different countries. However, due to the nature of the ParlaMint dataset, this entity linking task is challenging. In this paper, we investigate the task of linking entities from ParlaMint in different languages to a knowledge base, and evaluating the performance of three entity linking methods. We will be using DBPedia spotlight, WikiData and YAGO as the entity linking tools, and evaluate them on local politicians from several countries. We discuss two problems that arise with the entity linking in the ParlaMint corpus, namely inflection, and aliasing or the existence of name variants in text. This paper provides a first baseline on entity linking performance on multiple multilingual parliamentary debates, describes the problems that occur when attempting to link entities in ParlaMint, and makes a first attempt at tackling the aforementioned problems with existing methods.</abstract>
<identifier type="citekey">van-heusden-etal-2022-entity</identifier>
<location>
<url>https://aclanthology.org/2022.parlaclarin-1.8</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>47</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity Linking in the ParlaMint Corpus
%A van Heusden, Ruben
%A Marx, Maarten
%A Kamps, Jaap
%Y Fišer, Darja
%Y Eskevich, Maria
%Y Lenardič, Jakob
%Y de Jong, Franciska
%S Proceedings of the Workshop ParlaCLARIN III within the 13th Language Resources and Evaluation Conference
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F van-heusden-etal-2022-entity
%X The ParlaMint corpus is a multilingual corpus consisting of the parliamentary debates of seventeen European countries over a span of roughly five years. The automatically annotated versions of these corpora provide us with a wealth of linguistic information, including Named Entities. In order to further increase the research opportunities that can be created with this corpus, the linking of Named Entities to a knowledge base is a crucial step. If this can be done successfully and accurately, a lot of additional information can be gathered from the entities, such as political stance and party affiliation, not only within countries but also between the parliaments of different countries. However, due to the nature of the ParlaMint dataset, this entity linking task is challenging. In this paper, we investigate the task of linking entities from ParlaMint in different languages to a knowledge base, and evaluating the performance of three entity linking methods. We will be using DBPedia spotlight, WikiData and YAGO as the entity linking tools, and evaluate them on local politicians from several countries. We discuss two problems that arise with the entity linking in the ParlaMint corpus, namely inflection, and aliasing or the existence of name variants in text. This paper provides a first baseline on entity linking performance on multiple multilingual parliamentary debates, describes the problems that occur when attempting to link entities in ParlaMint, and makes a first attempt at tackling the aforementioned problems with existing methods.
%U https://aclanthology.org/2022.parlaclarin-1.8
%P 47-55
Markdown (Informal)
[Entity Linking in the ParlaMint Corpus](https://aclanthology.org/2022.parlaclarin-1.8) (van Heusden et al., ParlaCLARIN 2022)
ACL
- Ruben van Heusden, Maarten Marx, and Jaap Kamps. 2022. Entity Linking in the ParlaMint Corpus. In Proceedings of the Workshop ParlaCLARIN III within the 13th Language Resources and Evaluation Conference, pages 47–55, Marseille, France. European Language Resources Association.