@inproceedings{v-etal-2022-techssn,
title = "{T}ech{SSN} at {S}em{E}val-2022 Task 6: Intended Sarcasm Detection using Transformer Models",
author = "V, Ramdhanush and
Sivanaiah, Rajalakshmi and
S, Angel and
Rajendram, Sakaya Milton and
T T, Mirnalinee",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.semeval-1.118/",
doi = "10.18653/v1/2022.semeval-1.118",
pages = "851--855",
abstract = "Irony detection in the social media is an upcoming research which places a main role in sentiment analysis and offensive language identification. Sarcasm is one form of irony that is used to provide intended comments against realism. This paper describes a method to detect intended sarcasm in text (SemEval-2022 Task 6). The TECHSSN team used Bidirectional Encoder Representations from Transformers (BERT) models and its variants to classify the text as sarcastic or non-sarcastic in English and Arabic languages. The data is preprocessed and fed to the model for training. The transformer models learn the weights during the training phase from the given dataset and predicts the output class labels for the unseen test data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="v-etal-2022-techssn">
<titleInfo>
<title>TechSSN at SemEval-2022 Task 6: Intended Sarcasm Detection using Transformer Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ramdhanush</namePart>
<namePart type="family">V</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajalakshmi</namePart>
<namePart type="family">Sivanaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angel</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakaya</namePart>
<namePart type="given">Milton</namePart>
<namePart type="family">Rajendram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirnalinee</namePart>
<namePart type="family">T T</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyam</namePart>
<namePart type="family">Ratan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Irony detection in the social media is an upcoming research which places a main role in sentiment analysis and offensive language identification. Sarcasm is one form of irony that is used to provide intended comments against realism. This paper describes a method to detect intended sarcasm in text (SemEval-2022 Task 6). The TECHSSN team used Bidirectional Encoder Representations from Transformers (BERT) models and its variants to classify the text as sarcastic or non-sarcastic in English and Arabic languages. The data is preprocessed and fed to the model for training. The transformer models learn the weights during the training phase from the given dataset and predicts the output class labels for the unseen test data.</abstract>
<identifier type="citekey">v-etal-2022-techssn</identifier>
<identifier type="doi">10.18653/v1/2022.semeval-1.118</identifier>
<location>
<url>https://aclanthology.org/2022.semeval-1.118/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>851</start>
<end>855</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TechSSN at SemEval-2022 Task 6: Intended Sarcasm Detection using Transformer Models
%A V, Ramdhanush
%A Sivanaiah, Rajalakshmi
%A S, Angel
%A Rajendram, Sakaya Milton
%A T T, Mirnalinee
%Y Emerson, Guy
%Y Schluter, Natalie
%Y Stanovsky, Gabriel
%Y Kumar, Ritesh
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Singh, Siddharth
%Y Ratan, Shyam
%S Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F v-etal-2022-techssn
%X Irony detection in the social media is an upcoming research which places a main role in sentiment analysis and offensive language identification. Sarcasm is one form of irony that is used to provide intended comments against realism. This paper describes a method to detect intended sarcasm in text (SemEval-2022 Task 6). The TECHSSN team used Bidirectional Encoder Representations from Transformers (BERT) models and its variants to classify the text as sarcastic or non-sarcastic in English and Arabic languages. The data is preprocessed and fed to the model for training. The transformer models learn the weights during the training phase from the given dataset and predicts the output class labels for the unseen test data.
%R 10.18653/v1/2022.semeval-1.118
%U https://aclanthology.org/2022.semeval-1.118/
%U https://doi.org/10.18653/v1/2022.semeval-1.118
%P 851-855
Markdown (Informal)
[TechSSN at SemEval-2022 Task 6: Intended Sarcasm Detection using Transformer Models](https://aclanthology.org/2022.semeval-1.118/) (V et al., SemEval 2022)
ACL