@inproceedings{akrah-pedersen-2022-duluthnlp,
title = "{D}uluth{NLP} at {S}em{E}val-2022 Task 7: Classifying Plausible Alternatives with Pre{--}trained {ELECTRA}",
author = "Akrah, Samuel and
Pedersen, Ted",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.semeval-1.149/",
doi = "10.18653/v1/2022.semeval-1.149",
pages = "1062--1066",
abstract = "This paper describes the DuluthNLP system that participated in Task 7 of SemEval-2022 on Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts. Given an instructional text with an omitted token, the task requires models to classify or rank the plausibility of potential fillers. To solve the task, we fine{--}tuned the models BERT, RoBERTa, and ELECTRA on training data where potential fillers are rated for plausibility. This is a challenging problem, as shown by BERT-based models achieving accuracy less than 45{\%}. However, our ELECTRA model with tuned class weights on CrossEntropyLoss achieves an accuracy of 53.3{\%} on the official evaluation test data, which ranks 6 out of the 8 total submissions for Subtask A."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akrah-pedersen-2022-duluthnlp">
<titleInfo>
<title>DuluthNLP at SemEval-2022 Task 7: Classifying Plausible Alternatives with Pre–trained ELECTRA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Akrah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ted</namePart>
<namePart type="family">Pedersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyam</namePart>
<namePart type="family">Ratan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the DuluthNLP system that participated in Task 7 of SemEval-2022 on Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts. Given an instructional text with an omitted token, the task requires models to classify or rank the plausibility of potential fillers. To solve the task, we fine–tuned the models BERT, RoBERTa, and ELECTRA on training data where potential fillers are rated for plausibility. This is a challenging problem, as shown by BERT-based models achieving accuracy less than 45%. However, our ELECTRA model with tuned class weights on CrossEntropyLoss achieves an accuracy of 53.3% on the official evaluation test data, which ranks 6 out of the 8 total submissions for Subtask A.</abstract>
<identifier type="citekey">akrah-pedersen-2022-duluthnlp</identifier>
<identifier type="doi">10.18653/v1/2022.semeval-1.149</identifier>
<location>
<url>https://aclanthology.org/2022.semeval-1.149/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1062</start>
<end>1066</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DuluthNLP at SemEval-2022 Task 7: Classifying Plausible Alternatives with Pre–trained ELECTRA
%A Akrah, Samuel
%A Pedersen, Ted
%Y Emerson, Guy
%Y Schluter, Natalie
%Y Stanovsky, Gabriel
%Y Kumar, Ritesh
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Singh, Siddharth
%Y Ratan, Shyam
%S Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F akrah-pedersen-2022-duluthnlp
%X This paper describes the DuluthNLP system that participated in Task 7 of SemEval-2022 on Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts. Given an instructional text with an omitted token, the task requires models to classify or rank the plausibility of potential fillers. To solve the task, we fine–tuned the models BERT, RoBERTa, and ELECTRA on training data where potential fillers are rated for plausibility. This is a challenging problem, as shown by BERT-based models achieving accuracy less than 45%. However, our ELECTRA model with tuned class weights on CrossEntropyLoss achieves an accuracy of 53.3% on the official evaluation test data, which ranks 6 out of the 8 total submissions for Subtask A.
%R 10.18653/v1/2022.semeval-1.149
%U https://aclanthology.org/2022.semeval-1.149/
%U https://doi.org/10.18653/v1/2022.semeval-1.149
%P 1062-1066
Markdown (Informal)
[DuluthNLP at SemEval-2022 Task 7: Classifying Plausible Alternatives with Pre–trained ELECTRA](https://aclanthology.org/2022.semeval-1.149/) (Akrah & Pedersen, SemEval 2022)
ACL