@inproceedings{singh-etal-2022-silpa,
title = "silpa{\_}nlp at {S}em{E}val-2022 Tasks 11: Transformer based {NER} models for {H}indi and {B}angla languages",
author = "Singh, Sumit and
Jawale, Pawankumar and
Tiwary, Uma",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.semeval-1.211/",
doi = "10.18653/v1/2022.semeval-1.211",
pages = "1536--1542",
abstract = "We present Transformer based pretrained models, which are fine-tuned for Named Entity Recognition (NER) task. Our team participated in SemEval-2022 Task 11 MultiCoNER: Multilingual Complex Named Entity Recognition task for Hindi and Bangla. Result comparison of six models (mBERT, IndicBERT, MuRIL (Base), MuRIL (Large), XLM-RoBERTa (Base) and XLM-RoBERTa (Large) ) has been performed. It is found that among these models MuRIL (Large) model performs better for both the Hindi and Bangla languages. Its F1-Scores for Hindi and Bangla are 0.69 and 0.59 respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2022-silpa">
<titleInfo>
<title>silpa_nlp at SemEval-2022 Tasks 11: Transformer based NER models for Hindi and Bangla languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sumit</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawankumar</namePart>
<namePart type="family">Jawale</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Uma</namePart>
<namePart type="family">Tiwary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Stanovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shyam</namePart>
<namePart type="family">Ratan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Transformer based pretrained models, which are fine-tuned for Named Entity Recognition (NER) task. Our team participated in SemEval-2022 Task 11 MultiCoNER: Multilingual Complex Named Entity Recognition task for Hindi and Bangla. Result comparison of six models (mBERT, IndicBERT, MuRIL (Base), MuRIL (Large), XLM-RoBERTa (Base) and XLM-RoBERTa (Large) ) has been performed. It is found that among these models MuRIL (Large) model performs better for both the Hindi and Bangla languages. Its F1-Scores for Hindi and Bangla are 0.69 and 0.59 respectively.</abstract>
<identifier type="citekey">singh-etal-2022-silpa</identifier>
<identifier type="doi">10.18653/v1/2022.semeval-1.211</identifier>
<location>
<url>https://aclanthology.org/2022.semeval-1.211/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1536</start>
<end>1542</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T silpa_nlp at SemEval-2022 Tasks 11: Transformer based NER models for Hindi and Bangla languages
%A Singh, Sumit
%A Jawale, Pawankumar
%A Tiwary, Uma
%Y Emerson, Guy
%Y Schluter, Natalie
%Y Stanovsky, Gabriel
%Y Kumar, Ritesh
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Singh, Siddharth
%Y Ratan, Shyam
%S Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F singh-etal-2022-silpa
%X We present Transformer based pretrained models, which are fine-tuned for Named Entity Recognition (NER) task. Our team participated in SemEval-2022 Task 11 MultiCoNER: Multilingual Complex Named Entity Recognition task for Hindi and Bangla. Result comparison of six models (mBERT, IndicBERT, MuRIL (Base), MuRIL (Large), XLM-RoBERTa (Base) and XLM-RoBERTa (Large) ) has been performed. It is found that among these models MuRIL (Large) model performs better for both the Hindi and Bangla languages. Its F1-Scores for Hindi and Bangla are 0.69 and 0.59 respectively.
%R 10.18653/v1/2022.semeval-1.211
%U https://aclanthology.org/2022.semeval-1.211/
%U https://doi.org/10.18653/v1/2022.semeval-1.211
%P 1536-1542
Markdown (Informal)
[silpa_nlp at SemEval-2022 Tasks 11: Transformer based NER models for Hindi and Bangla languages](https://aclanthology.org/2022.semeval-1.211/) (Singh et al., SemEval 2022)
ACL