@inproceedings{kuznetsova-etal-2022-functional,
title = "Functional Data Analysis of Non-manual Marking of Questions in {K}azakh-{R}ussian {S}ign {L}anguage",
author = "Kuznetsova, Anna and
Imashev, Alfarabi and
Mukushev, Medet and
Sandygulova, Anara and
Kimmelman, Vadim",
editor = "Efthimiou, Eleni and
Fotinea, Stavroula-Evita and
Hanke, Thomas and
Hochgesang, Julie A. and
Kristoffersen, Jette and
Mesch, Johanna and
Schulder, Marc",
booktitle = "Proceedings of the LREC2022 10th Workshop on the Representation and Processing of Sign Languages: Multilingual Sign Language Resources",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.signlang-1.19/",
pages = "124--131",
abstract = "This paper is a continuation of Kuznetsova et al. (2021), which described non-manual markers of polar and wh-questions in comparison with statements in an NLP dataset of Kazakh-Russian Sign Language (KRSL) using Computer Vision. One of the limitations of the previous work was the distortion of the 3D face landmarks when the head was rotated. The proposed solution was to train a simple linear regression model to predict the distortion and then subtract it from the original output. We improve this technique with a multilayer perceptron. Another limitation that we intend to address in this paper is the discrete analysis of the continuous movement of non-manuals. In Kuznetsova et al. (2021) we averaged the value of the non-manual over its scope for statistical analysis. To preserve information on the shape of the movement, in this study we use a statistical tool that is often used in speech research, Functional Data Analysis, specifically Functional PCA."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kuznetsova-etal-2022-functional">
<titleInfo>
<title>Functional Data Analysis of Non-manual Marking of Questions in Kazakh-Russian Sign Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kuznetsova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alfarabi</namePart>
<namePart type="family">Imashev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Medet</namePart>
<namePart type="family">Mukushev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anara</namePart>
<namePart type="family">Sandygulova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vadim</namePart>
<namePart type="family">Kimmelman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the LREC2022 10th Workshop on the Representation and Processing of Sign Languages: Multilingual Sign Language Resources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eleni</namePart>
<namePart type="family">Efthimiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stavroula-Evita</namePart>
<namePart type="family">Fotinea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Hanke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julie</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Hochgesang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jette</namePart>
<namePart type="family">Kristoffersen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Mesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Schulder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper is a continuation of Kuznetsova et al. (2021), which described non-manual markers of polar and wh-questions in comparison with statements in an NLP dataset of Kazakh-Russian Sign Language (KRSL) using Computer Vision. One of the limitations of the previous work was the distortion of the 3D face landmarks when the head was rotated. The proposed solution was to train a simple linear regression model to predict the distortion and then subtract it from the original output. We improve this technique with a multilayer perceptron. Another limitation that we intend to address in this paper is the discrete analysis of the continuous movement of non-manuals. In Kuznetsova et al. (2021) we averaged the value of the non-manual over its scope for statistical analysis. To preserve information on the shape of the movement, in this study we use a statistical tool that is often used in speech research, Functional Data Analysis, specifically Functional PCA.</abstract>
<identifier type="citekey">kuznetsova-etal-2022-functional</identifier>
<location>
<url>https://aclanthology.org/2022.signlang-1.19/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>124</start>
<end>131</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Functional Data Analysis of Non-manual Marking of Questions in Kazakh-Russian Sign Language
%A Kuznetsova, Anna
%A Imashev, Alfarabi
%A Mukushev, Medet
%A Sandygulova, Anara
%A Kimmelman, Vadim
%Y Efthimiou, Eleni
%Y Fotinea, Stavroula-Evita
%Y Hanke, Thomas
%Y Hochgesang, Julie A.
%Y Kristoffersen, Jette
%Y Mesch, Johanna
%Y Schulder, Marc
%S Proceedings of the LREC2022 10th Workshop on the Representation and Processing of Sign Languages: Multilingual Sign Language Resources
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F kuznetsova-etal-2022-functional
%X This paper is a continuation of Kuznetsova et al. (2021), which described non-manual markers of polar and wh-questions in comparison with statements in an NLP dataset of Kazakh-Russian Sign Language (KRSL) using Computer Vision. One of the limitations of the previous work was the distortion of the 3D face landmarks when the head was rotated. The proposed solution was to train a simple linear regression model to predict the distortion and then subtract it from the original output. We improve this technique with a multilayer perceptron. Another limitation that we intend to address in this paper is the discrete analysis of the continuous movement of non-manuals. In Kuznetsova et al. (2021) we averaged the value of the non-manual over its scope for statistical analysis. To preserve information on the shape of the movement, in this study we use a statistical tool that is often used in speech research, Functional Data Analysis, specifically Functional PCA.
%U https://aclanthology.org/2022.signlang-1.19/
%P 124-131
Markdown (Informal)
[Functional Data Analysis of Non-manual Marking of Questions in Kazakh-Russian Sign Language](https://aclanthology.org/2022.signlang-1.19/) (Kuznetsova et al., SignLang 2022)
ACL