@inproceedings{celano-2022-transformer,
title = "A Transformer Architecture for the Prediction of Cognate Reflexes",
author = "Celano, Giuseppe G. A.",
editor = "Vylomova, Ekaterina and
Ponti, Edoardo and
Cotterell, Ryan",
booktitle = "Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
month = jul,
year = "2022",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sigtyp-1.10/",
doi = "10.18653/v1/2022.sigtyp-1.10",
pages = "80--85",
abstract = "This paper presents the transformer model built to participate in the SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes. It consists of an encoder-decoder architecture with multi-head attention mechanism. Its output is concatenated with the one hot encoding of the language label of an input character sequence to predict a target character sequence. The results show that the transformer outperforms the baseline rule-based system only partially."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="celano-2022-transformer">
<titleInfo>
<title>A Transformer Architecture for the Prediction of Cognate Reflexes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="given">G</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Celano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edoardo</namePart>
<namePart type="family">Ponti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the transformer model built to participate in the SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes. It consists of an encoder-decoder architecture with multi-head attention mechanism. Its output is concatenated with the one hot encoding of the language label of an input character sequence to predict a target character sequence. The results show that the transformer outperforms the baseline rule-based system only partially.</abstract>
<identifier type="citekey">celano-2022-transformer</identifier>
<identifier type="doi">10.18653/v1/2022.sigtyp-1.10</identifier>
<location>
<url>https://aclanthology.org/2022.sigtyp-1.10/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>80</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Transformer Architecture for the Prediction of Cognate Reflexes
%A Celano, Giuseppe G. A.
%Y Vylomova, Ekaterina
%Y Ponti, Edoardo
%Y Cotterell, Ryan
%S Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F celano-2022-transformer
%X This paper presents the transformer model built to participate in the SIGTYP 2022 Shared Task on the Prediction of Cognate Reflexes. It consists of an encoder-decoder architecture with multi-head attention mechanism. Its output is concatenated with the one hot encoding of the language label of an input character sequence to predict a target character sequence. The results show that the transformer outperforms the baseline rule-based system only partially.
%R 10.18653/v1/2022.sigtyp-1.10
%U https://aclanthology.org/2022.sigtyp-1.10/
%U https://doi.org/10.18653/v1/2022.sigtyp-1.10
%P 80-85
Markdown (Informal)
[A Transformer Architecture for the Prediction of Cognate Reflexes](https://aclanthology.org/2022.sigtyp-1.10/) (Celano, SIGTYP 2022)
ACL