@inproceedings{rakhmanov-schlippe-2022-sentiment,
title = "Sentiment Analysis for {H}ausa: Classifying Students' Comments",
author = "Rakhmanov, Ochilbek and
Schlippe, Tim",
editor = "Melero, Maite and
Sakti, Sakriani and
Soria, Claudia",
booktitle = "Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.sigul-1.13/",
pages = "98--105",
abstract = "We describe our work on sentiment analysis for Hausa, where we investigated monolingual and cross-lingual approaches to classify student comments in course evaluations. Furthermore, we propose a novel stemming algorithm to improve accuracy. For studies in this area, we collected a corpus of more than 40,000 comments{---}the Hausa-English Sentiment Analysis Corpus For Educational Environments (HESAC). Our results demonstrate that the monolingual approaches for Hausa sentiment analysis slightly outperform the cross-lingual systems. Using our stemming algorithm in the pre-processing even improved the best model resulting in 97.4{\%} accuracy on HESAC."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rakhmanov-schlippe-2022-sentiment">
<titleInfo>
<title>Sentiment Analysis for Hausa: Classifying Students’ Comments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ochilbek</namePart>
<namePart type="family">Rakhmanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Schlippe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Melero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Soria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe our work on sentiment analysis for Hausa, where we investigated monolingual and cross-lingual approaches to classify student comments in course evaluations. Furthermore, we propose a novel stemming algorithm to improve accuracy. For studies in this area, we collected a corpus of more than 40,000 comments—the Hausa-English Sentiment Analysis Corpus For Educational Environments (HESAC). Our results demonstrate that the monolingual approaches for Hausa sentiment analysis slightly outperform the cross-lingual systems. Using our stemming algorithm in the pre-processing even improved the best model resulting in 97.4% accuracy on HESAC.</abstract>
<identifier type="citekey">rakhmanov-schlippe-2022-sentiment</identifier>
<location>
<url>https://aclanthology.org/2022.sigul-1.13/</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>98</start>
<end>105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Analysis for Hausa: Classifying Students’ Comments
%A Rakhmanov, Ochilbek
%A Schlippe, Tim
%Y Melero, Maite
%Y Sakti, Sakriani
%Y Soria, Claudia
%S Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages
%D 2022
%8 June
%I European Language Resources Association
%C Marseille, France
%F rakhmanov-schlippe-2022-sentiment
%X We describe our work on sentiment analysis for Hausa, where we investigated monolingual and cross-lingual approaches to classify student comments in course evaluations. Furthermore, we propose a novel stemming algorithm to improve accuracy. For studies in this area, we collected a corpus of more than 40,000 comments—the Hausa-English Sentiment Analysis Corpus For Educational Environments (HESAC). Our results demonstrate that the monolingual approaches for Hausa sentiment analysis slightly outperform the cross-lingual systems. Using our stemming algorithm in the pre-processing even improved the best model resulting in 97.4% accuracy on HESAC.
%U https://aclanthology.org/2022.sigul-1.13/
%P 98-105
Markdown (Informal)
[Sentiment Analysis for Hausa: Classifying Students’ Comments](https://aclanthology.org/2022.sigul-1.13/) (Rakhmanov & Schlippe, SIGUL 2022)
ACL