@inproceedings{chiu-etal-2022-joint,
title = "A Joint Learning Approach for Semi-supervised Neural Topic Modeling",
author = "Chiu, Jeffrey and
Mittal, Rajat and
Tumma, Neehal and
Sharma, Abhishek and
Doshi-Velez, Finale",
editor = "Vlachos, Andreas and
Agrawal, Priyanka and
Martins, Andr{\'e} and
Lampouras, Gerasimos and
Lyu, Chunchuan",
booktitle = "Proceedings of the Sixth Workshop on Structured Prediction for NLP",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.spnlp-1.5/",
doi = "10.18653/v1/2022.spnlp-1.5",
pages = "40--51",
abstract = "Topic models are some of the most popular ways to represent textual data in an interpret-able manner. Recently, advances in deep generative models, specifically auto-encoding variational Bayes (AEVB), have led to the introduction of unsupervised neural topic models, which leverage deep generative models as opposed to traditional statistics-based topic models. We extend upon these neural topic models by introducing the Label-Indexed Neural Topic Model (LI-NTM), which is, to the extent of our knowledge, the first effective upstream semi-supervised neural topic model. We find that LI-NTM outperforms existing neural topic models in document reconstruction benchmarks, with the most notable results in low labeled data regimes and for data-sets with informative labels; furthermore, our jointly learned classifier outperforms baseline classifiers in ablation studies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chiu-etal-2022-joint">
<titleInfo>
<title>A Joint Learning Approach for Semi-supervised Neural Topic Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jeffrey</namePart>
<namePart type="family">Chiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajat</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neehal</namePart>
<namePart type="family">Tumma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Finale</namePart>
<namePart type="family">Doshi-Velez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Structured Prediction for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priyanka</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Lampouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chunchuan</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic models are some of the most popular ways to represent textual data in an interpret-able manner. Recently, advances in deep generative models, specifically auto-encoding variational Bayes (AEVB), have led to the introduction of unsupervised neural topic models, which leverage deep generative models as opposed to traditional statistics-based topic models. We extend upon these neural topic models by introducing the Label-Indexed Neural Topic Model (LI-NTM), which is, to the extent of our knowledge, the first effective upstream semi-supervised neural topic model. We find that LI-NTM outperforms existing neural topic models in document reconstruction benchmarks, with the most notable results in low labeled data regimes and for data-sets with informative labels; furthermore, our jointly learned classifier outperforms baseline classifiers in ablation studies.</abstract>
<identifier type="citekey">chiu-etal-2022-joint</identifier>
<identifier type="doi">10.18653/v1/2022.spnlp-1.5</identifier>
<location>
<url>https://aclanthology.org/2022.spnlp-1.5/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>40</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Joint Learning Approach for Semi-supervised Neural Topic Modeling
%A Chiu, Jeffrey
%A Mittal, Rajat
%A Tumma, Neehal
%A Sharma, Abhishek
%A Doshi-Velez, Finale
%Y Vlachos, Andreas
%Y Agrawal, Priyanka
%Y Martins, André
%Y Lampouras, Gerasimos
%Y Lyu, Chunchuan
%S Proceedings of the Sixth Workshop on Structured Prediction for NLP
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F chiu-etal-2022-joint
%X Topic models are some of the most popular ways to represent textual data in an interpret-able manner. Recently, advances in deep generative models, specifically auto-encoding variational Bayes (AEVB), have led to the introduction of unsupervised neural topic models, which leverage deep generative models as opposed to traditional statistics-based topic models. We extend upon these neural topic models by introducing the Label-Indexed Neural Topic Model (LI-NTM), which is, to the extent of our knowledge, the first effective upstream semi-supervised neural topic model. We find that LI-NTM outperforms existing neural topic models in document reconstruction benchmarks, with the most notable results in low labeled data regimes and for data-sets with informative labels; furthermore, our jointly learned classifier outperforms baseline classifiers in ablation studies.
%R 10.18653/v1/2022.spnlp-1.5
%U https://aclanthology.org/2022.spnlp-1.5/
%U https://doi.org/10.18653/v1/2022.spnlp-1.5
%P 40-51
Markdown (Informal)
[A Joint Learning Approach for Semi-supervised Neural Topic Modeling](https://aclanthology.org/2022.spnlp-1.5/) (Chiu et al., spnlp 2022)
ACL