@inproceedings{saeedizade-etal-2022-kgrefiner,
title = "{KGR}efiner: Knowledge Graph Refinement for Improving Accuracy of Translational Link Prediction Methods",
author = "Saeedizade, Mohammad Javad and
Torabian, Najmeh and
Minaei-Bidgoli, Behrouz",
editor = {Fan, Angela and
Gurevych, Iryna and
Hou, Yufang and
Kozareva, Zornitsa and
Luccioni, Sasha and
Sadat Moosavi, Nafise and
Ravi, Sujith and
Kim, Gyuwan and
Schwartz, Roy and
R{\"u}ckl{\'e}, Andreas},
booktitle = "Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.sustainlp-1.3",
doi = "10.18653/v1/2022.sustainlp-1.3",
pages = "10--16",
abstract = "Link Prediction is the task of predicting missing relations between knowledge graph entities (KG). Recent work in link prediction mainly attempted to adapt a model to increase link prediction accuracy by using more layers in neural network architecture, which heavily rely on computational resources. This paper proposes the refinement of knowledge graphs to perform link prediction operations more accurately using relatively fast translational models. Translational link prediction models have significantly less complexity than deep learning approaches; this motivated us to improve their accuracy. Our method uses the ontologies of knowledge graphs to add information as auxiliary nodes to the graph. Then, these auxiliary nodes are connected to ordinary nodes of the KG that contain auxiliary information in their hierarchy. Our experiments show that our method can significantly increase the performance of translational link prediction methods in Hit@10, Mean Rank, and Mean Reciprocal Rank.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saeedizade-etal-2022-kgrefiner">
<titleInfo>
<title>KGRefiner: Knowledge Graph Refinement for Improving Accuracy of Translational Link Prediction Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Javad</namePart>
<namePart type="family">Saeedizade</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Najmeh</namePart>
<namePart type="family">Torabian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behrouz</namePart>
<namePart type="family">Minaei-Bidgoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Angela</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufang</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sasha</namePart>
<namePart type="family">Luccioni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nafise</namePart>
<namePart type="family">Sadat Moosavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujith</namePart>
<namePart type="family">Ravi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gyuwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roy</namePart>
<namePart type="family">Schwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Rücklé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Link Prediction is the task of predicting missing relations between knowledge graph entities (KG). Recent work in link prediction mainly attempted to adapt a model to increase link prediction accuracy by using more layers in neural network architecture, which heavily rely on computational resources. This paper proposes the refinement of knowledge graphs to perform link prediction operations more accurately using relatively fast translational models. Translational link prediction models have significantly less complexity than deep learning approaches; this motivated us to improve their accuracy. Our method uses the ontologies of knowledge graphs to add information as auxiliary nodes to the graph. Then, these auxiliary nodes are connected to ordinary nodes of the KG that contain auxiliary information in their hierarchy. Our experiments show that our method can significantly increase the performance of translational link prediction methods in Hit@10, Mean Rank, and Mean Reciprocal Rank.</abstract>
<identifier type="citekey">saeedizade-etal-2022-kgrefiner</identifier>
<identifier type="doi">10.18653/v1/2022.sustainlp-1.3</identifier>
<location>
<url>https://aclanthology.org/2022.sustainlp-1.3</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>10</start>
<end>16</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T KGRefiner: Knowledge Graph Refinement for Improving Accuracy of Translational Link Prediction Methods
%A Saeedizade, Mohammad Javad
%A Torabian, Najmeh
%A Minaei-Bidgoli, Behrouz
%Y Fan, Angela
%Y Gurevych, Iryna
%Y Hou, Yufang
%Y Kozareva, Zornitsa
%Y Luccioni, Sasha
%Y Sadat Moosavi, Nafise
%Y Ravi, Sujith
%Y Kim, Gyuwan
%Y Schwartz, Roy
%Y Rücklé, Andreas
%S Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F saeedizade-etal-2022-kgrefiner
%X Link Prediction is the task of predicting missing relations between knowledge graph entities (KG). Recent work in link prediction mainly attempted to adapt a model to increase link prediction accuracy by using more layers in neural network architecture, which heavily rely on computational resources. This paper proposes the refinement of knowledge graphs to perform link prediction operations more accurately using relatively fast translational models. Translational link prediction models have significantly less complexity than deep learning approaches; this motivated us to improve their accuracy. Our method uses the ontologies of knowledge graphs to add information as auxiliary nodes to the graph. Then, these auxiliary nodes are connected to ordinary nodes of the KG that contain auxiliary information in their hierarchy. Our experiments show that our method can significantly increase the performance of translational link prediction methods in Hit@10, Mean Rank, and Mean Reciprocal Rank.
%R 10.18653/v1/2022.sustainlp-1.3
%U https://aclanthology.org/2022.sustainlp-1.3
%U https://doi.org/10.18653/v1/2022.sustainlp-1.3
%P 10-16
Markdown (Informal)
[KGRefiner: Knowledge Graph Refinement for Improving Accuracy of Translational Link Prediction Methods](https://aclanthology.org/2022.sustainlp-1.3) (Saeedizade et al., sustainlp 2022)
ACL