@article{guo-etal-2022-survey,
title = "A Survey on Automated Fact-Checking",
author = "Guo, Zhijiang and
Schlichtkrull, Michael and
Vlachos, Andreas",
editor = "Roark, Brian and
Nenkova, Ani",
journal = "Transactions of the Association for Computational Linguistics",
volume = "10",
year = "2022",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2022.tacl-1.11",
doi = "10.1162/tacl_a_00454",
pages = "178--206",
abstract = "Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-etal-2022-survey">
<titleInfo>
<title>A Survey on Automated Fact-Checking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhijiang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Schlichtkrull</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.</abstract>
<identifier type="citekey">guo-etal-2022-survey</identifier>
<identifier type="doi">10.1162/tacl_a_00454</identifier>
<location>
<url>https://aclanthology.org/2022.tacl-1.11</url>
</location>
<part>
<date>2022</date>
<detail type="volume"><number>10</number></detail>
<extent unit="page">
<start>178</start>
<end>206</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T A Survey on Automated Fact-Checking
%A Guo, Zhijiang
%A Schlichtkrull, Michael
%A Vlachos, Andreas
%J Transactions of the Association for Computational Linguistics
%D 2022
%V 10
%I MIT Press
%C Cambridge, MA
%F guo-etal-2022-survey
%X Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.
%R 10.1162/tacl_a_00454
%U https://aclanthology.org/2022.tacl-1.11
%U https://doi.org/10.1162/tacl_a_00454
%P 178-206
Markdown (Informal)
[A Survey on Automated Fact-Checking](https://aclanthology.org/2022.tacl-1.11) (Guo et al., TACL 2022)
ACL
- Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos. 2022. A Survey on Automated Fact-Checking. Transactions of the Association for Computational Linguistics, 10:178–206.