@inproceedings{poncelas-etal-2022-rakutens,
title = "Rakuten{'}s Participation in {WAT} 2022: Parallel Dataset Filtering by Leveraging Vocabulary Heterogeneity",
author = "Poncelas, Alberto and
Effendi, Johanes and
Htun, Ohnmar and
Yadav, Sunil and
Wang, Dongzhe and
Jain, Saurabh",
booktitle = "Proceedings of the 9th Workshop on Asian Translation",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Conference on Computational Linguistics",
url = "https://aclanthology.org/2022.wat-1.7",
pages = "68--72",
abstract = "This paper introduces our neural machine translation system{'}s participation in the WAT 2022 shared translation task (team ID: sakura). We participated in the Parallel Data Filtering Task. Our approach based on Feature Decay Algorithms achieved +1.4 and +2.4 BLEU points for English to Japanese and Japanese to English respectively compared to the model trained on the full dataset, showing the effectiveness of FDA on in-domain data selection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poncelas-etal-2022-rakutens">
<titleInfo>
<title>Rakuten’s Participation in WAT 2022: Parallel Dataset Filtering by Leveraging Vocabulary Heterogeneity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Poncelas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanes</namePart>
<namePart type="family">Effendi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ohnmar</namePart>
<namePart type="family">Htun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunil</namePart>
<namePart type="family">Yadav</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongzhe</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saurabh</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Asian Translation</title>
</titleInfo>
<originInfo>
<publisher>International Conference on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces our neural machine translation system’s participation in the WAT 2022 shared translation task (team ID: sakura). We participated in the Parallel Data Filtering Task. Our approach based on Feature Decay Algorithms achieved +1.4 and +2.4 BLEU points for English to Japanese and Japanese to English respectively compared to the model trained on the full dataset, showing the effectiveness of FDA on in-domain data selection.</abstract>
<identifier type="citekey">poncelas-etal-2022-rakutens</identifier>
<location>
<url>https://aclanthology.org/2022.wat-1.7</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>68</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rakuten’s Participation in WAT 2022: Parallel Dataset Filtering by Leveraging Vocabulary Heterogeneity
%A Poncelas, Alberto
%A Effendi, Johanes
%A Htun, Ohnmar
%A Yadav, Sunil
%A Wang, Dongzhe
%A Jain, Saurabh
%S Proceedings of the 9th Workshop on Asian Translation
%D 2022
%8 October
%I International Conference on Computational Linguistics
%C Gyeongju, Republic of Korea
%F poncelas-etal-2022-rakutens
%X This paper introduces our neural machine translation system’s participation in the WAT 2022 shared translation task (team ID: sakura). We participated in the Parallel Data Filtering Task. Our approach based on Feature Decay Algorithms achieved +1.4 and +2.4 BLEU points for English to Japanese and Japanese to English respectively compared to the model trained on the full dataset, showing the effectiveness of FDA on in-domain data selection.
%U https://aclanthology.org/2022.wat-1.7
%P 68-72
Markdown (Informal)
[Rakuten’s Participation in WAT 2022: Parallel Dataset Filtering by Leveraging Vocabulary Heterogeneity](https://aclanthology.org/2022.wat-1.7) (Poncelas et al., WAT 2022)
ACL