@inproceedings{khurana-etal-2022-hate,
title = "Hate Speech Criteria: A Modular Approach to Task-Specific Hate Speech Definitions",
author = "Khurana, Urja and
Vermeulen, Ivar and
Nalisnick, Eric and
Van Noorloos, Marloes and
Fokkens, Antske",
editor = "Narang, Kanika and
Mostafazadeh Davani, Aida and
Mathias, Lambert and
Vidgen, Bertie and
Talat, Zeerak",
booktitle = "Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)",
month = jul,
year = "2022",
address = "Seattle, Washington (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.woah-1.17",
doi = "10.18653/v1/2022.woah-1.17",
pages = "176--191",
abstract = "The subjectivity of automatic hate speech detection makes it a complex task, reflected in different and incomplete definitions in NLP. We present hate speech criteria, developed with insights from a law and social science expert, that help researchers create more explicit definitions and annotation guidelines on five aspects: (1) target groups and (2) dominance, (3) perpetrator characteristics, (4) explicit presence of negative interactions, and the (5) type of consequences/effects. Definitions can be structured so that they cover a more broad or more narrow phenomenon and conscious choices can be made on specifying criteria or leaving them open. We argue that the goal and exact task developers have in mind should determine how the scope of hate speech is defined. We provide an overview of the properties of datasets from hatespeechdata.com that may help select the most suitable dataset for a specific scenario.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="khurana-etal-2022-hate">
<titleInfo>
<title>Hate Speech Criteria: A Modular Approach to Task-Specific Hate Speech Definitions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Urja</namePart>
<namePart type="family">Khurana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivar</namePart>
<namePart type="family">Vermeulen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Nalisnick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marloes</namePart>
<namePart type="family">Van Noorloos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antske</namePart>
<namePart type="family">Fokkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kanika</namePart>
<namePart type="family">Narang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aida</namePart>
<namePart type="family">Mostafazadeh Davani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lambert</namePart>
<namePart type="family">Mathias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bertie</namePart>
<namePart type="family">Vidgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Talat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The subjectivity of automatic hate speech detection makes it a complex task, reflected in different and incomplete definitions in NLP. We present hate speech criteria, developed with insights from a law and social science expert, that help researchers create more explicit definitions and annotation guidelines on five aspects: (1) target groups and (2) dominance, (3) perpetrator characteristics, (4) explicit presence of negative interactions, and the (5) type of consequences/effects. Definitions can be structured so that they cover a more broad or more narrow phenomenon and conscious choices can be made on specifying criteria or leaving them open. We argue that the goal and exact task developers have in mind should determine how the scope of hate speech is defined. We provide an overview of the properties of datasets from hatespeechdata.com that may help select the most suitable dataset for a specific scenario.</abstract>
<identifier type="citekey">khurana-etal-2022-hate</identifier>
<identifier type="doi">10.18653/v1/2022.woah-1.17</identifier>
<location>
<url>https://aclanthology.org/2022.woah-1.17</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>176</start>
<end>191</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hate Speech Criteria: A Modular Approach to Task-Specific Hate Speech Definitions
%A Khurana, Urja
%A Vermeulen, Ivar
%A Nalisnick, Eric
%A Van Noorloos, Marloes
%A Fokkens, Antske
%Y Narang, Kanika
%Y Mostafazadeh Davani, Aida
%Y Mathias, Lambert
%Y Vidgen, Bertie
%Y Talat, Zeerak
%S Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington (Hybrid)
%F khurana-etal-2022-hate
%X The subjectivity of automatic hate speech detection makes it a complex task, reflected in different and incomplete definitions in NLP. We present hate speech criteria, developed with insights from a law and social science expert, that help researchers create more explicit definitions and annotation guidelines on five aspects: (1) target groups and (2) dominance, (3) perpetrator characteristics, (4) explicit presence of negative interactions, and the (5) type of consequences/effects. Definitions can be structured so that they cover a more broad or more narrow phenomenon and conscious choices can be made on specifying criteria or leaving them open. We argue that the goal and exact task developers have in mind should determine how the scope of hate speech is defined. We provide an overview of the properties of datasets from hatespeechdata.com that may help select the most suitable dataset for a specific scenario.
%R 10.18653/v1/2022.woah-1.17
%U https://aclanthology.org/2022.woah-1.17
%U https://doi.org/10.18653/v1/2022.woah-1.17
%P 176-191
Markdown (Informal)
[Hate Speech Criteria: A Modular Approach to Task-Specific Hate Speech Definitions](https://aclanthology.org/2022.woah-1.17) (Khurana et al., WOAH 2022)
ACL