@inproceedings{volum-etal-2022-craft,
title = "Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code",
author = "Volum, Ryan and
Rao, Sudha and
Xu, Michael and
DesGarennes, Gabriel and
Brockett, Chris and
Van Durme, Benjamin and
Deng, Olivia and
Malhotra, Akanksha and
Dolan, Bill",
editor = "C{\^o}t{\'e}, Marc-Alexandre and
Yuan, Xingdi and
Ammanabrolu, Prithviraj",
booktitle = "Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wordplay-1.3/",
doi = "10.18653/v1/2022.wordplay-1.3",
pages = "25--43",
abstract = "Non-Player Characters (NPCs) significantly enhance the player experience in many games. Historically, players' interactions with NPCs have tended to be highly scripted, to be limited to natural language responses to be selected by the player, and to not involve dynamic change in game state. In this work, we demonstrate that use of a few example conversational prompts can power a conversational agent to generate both natural language and novel code. This approach can permit development of NPCs with which players can have grounded conversations that are free-form and less repetitive. We demonstrate our approach using OpenAI Codex (GPT-3 finetuned on GitHub), with Minecraft game development as our test bed. We show that with a few example prompts, a Codex-based agent can generate novel code, hold multi-turn conversations and answer questions about structured data. We evaluate this application using experienced gamers in a Minecraft realm and provide analysis of failure cases and suggest possible directions for solutions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="volum-etal-2022-craft">
<titleInfo>
<title>Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Volum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudha</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">DesGarennes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brockett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olivia</namePart>
<namePart type="family">Deng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akanksha</namePart>
<namePart type="family">Malhotra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bill</namePart>
<namePart type="family">Dolan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marc-Alexandre</namePart>
<namePart type="family">Côté</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingdi</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prithviraj</namePart>
<namePart type="family">Ammanabrolu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Non-Player Characters (NPCs) significantly enhance the player experience in many games. Historically, players’ interactions with NPCs have tended to be highly scripted, to be limited to natural language responses to be selected by the player, and to not involve dynamic change in game state. In this work, we demonstrate that use of a few example conversational prompts can power a conversational agent to generate both natural language and novel code. This approach can permit development of NPCs with which players can have grounded conversations that are free-form and less repetitive. We demonstrate our approach using OpenAI Codex (GPT-3 finetuned on GitHub), with Minecraft game development as our test bed. We show that with a few example prompts, a Codex-based agent can generate novel code, hold multi-turn conversations and answer questions about structured data. We evaluate this application using experienced gamers in a Minecraft realm and provide analysis of failure cases and suggest possible directions for solutions.</abstract>
<identifier type="citekey">volum-etal-2022-craft</identifier>
<identifier type="doi">10.18653/v1/2022.wordplay-1.3</identifier>
<location>
<url>https://aclanthology.org/2022.wordplay-1.3/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>25</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code
%A Volum, Ryan
%A Rao, Sudha
%A Xu, Michael
%A DesGarennes, Gabriel
%A Brockett, Chris
%A Van Durme, Benjamin
%A Deng, Olivia
%A Malhotra, Akanksha
%A Dolan, Bill
%Y Côté, Marc-Alexandre
%Y Yuan, Xingdi
%Y Ammanabrolu, Prithviraj
%S Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F volum-etal-2022-craft
%X Non-Player Characters (NPCs) significantly enhance the player experience in many games. Historically, players’ interactions with NPCs have tended to be highly scripted, to be limited to natural language responses to be selected by the player, and to not involve dynamic change in game state. In this work, we demonstrate that use of a few example conversational prompts can power a conversational agent to generate both natural language and novel code. This approach can permit development of NPCs with which players can have grounded conversations that are free-form and less repetitive. We demonstrate our approach using OpenAI Codex (GPT-3 finetuned on GitHub), with Minecraft game development as our test bed. We show that with a few example prompts, a Codex-based agent can generate novel code, hold multi-turn conversations and answer questions about structured data. We evaluate this application using experienced gamers in a Minecraft realm and provide analysis of failure cases and suggest possible directions for solutions.
%R 10.18653/v1/2022.wordplay-1.3
%U https://aclanthology.org/2022.wordplay-1.3/
%U https://doi.org/10.18653/v1/2022.wordplay-1.3
%P 25-43
Markdown (Informal)
[Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code](https://aclanthology.org/2022.wordplay-1.3/) (Volum et al., Wordplay 2022)
ACL
- Ryan Volum, Sudha Rao, Michael Xu, Gabriel DesGarennes, Chris Brockett, Benjamin Van Durme, Olivia Deng, Akanksha Malhotra, and Bill Dolan. 2022. Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code. In Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022), pages 25–43, Seattle, United States. Association for Computational Linguistics.