TabGenie: A Toolkit for Table-to-Text Generation

Zdeněk Kasner, Ekaterina Garanina, Ondrej Platek, Ondrej Dusek


Abstract
Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie – a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all inputs are represented as tables with associated metadata. The tables can be explored through a web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.
Anthology ID:
2023.acl-demo.42
Volume:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Danushka Bollegala, Ruihong Huang, Alan Ritter
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
444–455
Language:
URL:
https://aclanthology.org/2023.acl-demo.42
DOI:
10.18653/v1/2023.acl-demo.42
Bibkey:
Cite (ACL):
Zdeněk Kasner, Ekaterina Garanina, Ondrej Platek, and Ondrej Dusek. 2023. TabGenie: A Toolkit for Table-to-Text Generation. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 444–455, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
TabGenie: A Toolkit for Table-to-Text Generation (Kasner et al., ACL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.acl-demo.42.pdf
Video:
 https://aclanthology.org/2023.acl-demo.42.mp4