@inproceedings{kasner-etal-2023-tabgenie,
title = "{T}ab{G}enie: A Toolkit for Table-to-Text Generation",
author = "Kasner, Zden{\v{e}}k and
Garanina, Ekaterina and
Platek, Ondrej and
Dusek, Ondrej",
editor = "Bollegala, Danushka and
Huang, Ruihong and
Ritter, Alan",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-demo.42",
doi = "10.18653/v1/2023.acl-demo.42",
pages = "444--455",
abstract = "Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie {--} a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all inputs are represented as tables with associated metadata. The tables can be explored through a web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at \url{https://github.com/kasnerz/tabgenie}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kasner-etal-2023-tabgenie">
<titleInfo>
<title>TabGenie: A Toolkit for Table-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Kasner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Garanina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Platek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danushka</namePart>
<namePart type="family">Bollegala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie – a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all inputs are represented as tables with associated metadata. The tables can be explored through a web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.</abstract>
<identifier type="citekey">kasner-etal-2023-tabgenie</identifier>
<identifier type="doi">10.18653/v1/2023.acl-demo.42</identifier>
<location>
<url>https://aclanthology.org/2023.acl-demo.42</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>444</start>
<end>455</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TabGenie: A Toolkit for Table-to-Text Generation
%A Kasner, Zdeněk
%A Garanina, Ekaterina
%A Platek, Ondrej
%A Dusek, Ondrej
%Y Bollegala, Danushka
%Y Huang, Ruihong
%Y Ritter, Alan
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F kasner-etal-2023-tabgenie
%X Heterogenity of data-to-text generation datasets limits the research on data-to-text generation systems. We present TabGenie – a toolkit which enables researchers to explore, preprocess, and analyze a variety of data-to-text generation datasets through the unified framework of table-to-text generation. In TabGenie, all inputs are represented as tables with associated metadata. The tables can be explored through a web interface, which also provides an interactive mode for debugging table-to-text generation, facilitates side-by-side comparison of generated system outputs, and allows easy exports for manual analysis. Furthermore, TabGenie is equipped with command line processing tools and Python bindings for unified dataset loading and processing. We release TabGenie as a PyPI package and provide its open-source code and a live demo at https://github.com/kasnerz/tabgenie.
%R 10.18653/v1/2023.acl-demo.42
%U https://aclanthology.org/2023.acl-demo.42
%U https://doi.org/10.18653/v1/2023.acl-demo.42
%P 444-455
Markdown (Informal)
[TabGenie: A Toolkit for Table-to-Text Generation](https://aclanthology.org/2023.acl-demo.42) (Kasner et al., ACL 2023)
ACL
- Zdeněk Kasner, Ekaterina Garanina, Ondrej Platek, and Ondrej Dusek. 2023. TabGenie: A Toolkit for Table-to-Text Generation. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 444–455, Toronto, Canada. Association for Computational Linguistics.