@inproceedings{zhang-etal-2023-event,
title = "Event-Centric Query Expansion in Web Search",
author = "Zhang, Yanan and
Cui, Weijie and
Zhang, Yangfan and
Bai, Xiaoling and
Zhang, Zhe and
Ma, Jin and
Chen, Xiang and
Zhou, Tianhua",
editor = "Sitaram, Sunayana and
Beigman Klebanov, Beata and
Williams, Jason D",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-industry.45",
doi = "10.18653/v1/2023.acl-industry.45",
pages = "464--475",
abstract = "In search engines, query expansion (QE) is a crucial technique to improve search experience. Previous studies often rely on long-term search log mining, which leads to slow updates and is sub-optimal for time-sensitive news searches. In this work, we present Event-Centric Query Expansion (EQE), the QE system used in a famous Chinese search engine. EQE utilizes a novel event retrieval framework that consists of four stages, i.e., event collection, event reformulation, semantic retrieval and online ranking, which can select the best expansion from a significant amount of potential events rapidly and accurately. Specifically, we first collect and filter news headlines from websites. Then we propose a generation model that incorporates contrastive learning and prompt-tuning techniques to reformulate these headlines to concise candidates. Additionally, we fine-tune a dual-tower semantic model to serve as an encoder for event retrieval and explore a two-stage contrastive training approach to enhance the accuracy of event retrieval. Finally, we rank the retrieved events and select the optimal one as QE, which is then used to improve the retrieval of event-related documents. Through offline analysis and online A/B testing, we observed that the EQE system has significantly improved many indicators compared to the baseline. The system has been deployed in a real production environment and serves hundreds of millions of users.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2023-event">
<titleInfo>
<title>Event-Centric Query Expansion in Web Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weijie</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangfan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoling</namePart>
<namePart type="family">Bai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhe</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianhua</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sunayana</namePart>
<namePart type="family">Sitaram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="family">Beigman Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In search engines, query expansion (QE) is a crucial technique to improve search experience. Previous studies often rely on long-term search log mining, which leads to slow updates and is sub-optimal for time-sensitive news searches. In this work, we present Event-Centric Query Expansion (EQE), the QE system used in a famous Chinese search engine. EQE utilizes a novel event retrieval framework that consists of four stages, i.e., event collection, event reformulation, semantic retrieval and online ranking, which can select the best expansion from a significant amount of potential events rapidly and accurately. Specifically, we first collect and filter news headlines from websites. Then we propose a generation model that incorporates contrastive learning and prompt-tuning techniques to reformulate these headlines to concise candidates. Additionally, we fine-tune a dual-tower semantic model to serve as an encoder for event retrieval and explore a two-stage contrastive training approach to enhance the accuracy of event retrieval. Finally, we rank the retrieved events and select the optimal one as QE, which is then used to improve the retrieval of event-related documents. Through offline analysis and online A/B testing, we observed that the EQE system has significantly improved many indicators compared to the baseline. The system has been deployed in a real production environment and serves hundreds of millions of users.</abstract>
<identifier type="citekey">zhang-etal-2023-event</identifier>
<identifier type="doi">10.18653/v1/2023.acl-industry.45</identifier>
<location>
<url>https://aclanthology.org/2023.acl-industry.45</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>464</start>
<end>475</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Event-Centric Query Expansion in Web Search
%A Zhang, Yanan
%A Cui, Weijie
%A Zhang, Yangfan
%A Bai, Xiaoling
%A Zhang, Zhe
%A Ma, Jin
%A Chen, Xiang
%A Zhou, Tianhua
%Y Sitaram, Sunayana
%Y Beigman Klebanov, Beata
%Y Williams, Jason D.
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F zhang-etal-2023-event
%X In search engines, query expansion (QE) is a crucial technique to improve search experience. Previous studies often rely on long-term search log mining, which leads to slow updates and is sub-optimal for time-sensitive news searches. In this work, we present Event-Centric Query Expansion (EQE), the QE system used in a famous Chinese search engine. EQE utilizes a novel event retrieval framework that consists of four stages, i.e., event collection, event reformulation, semantic retrieval and online ranking, which can select the best expansion from a significant amount of potential events rapidly and accurately. Specifically, we first collect and filter news headlines from websites. Then we propose a generation model that incorporates contrastive learning and prompt-tuning techniques to reformulate these headlines to concise candidates. Additionally, we fine-tune a dual-tower semantic model to serve as an encoder for event retrieval and explore a two-stage contrastive training approach to enhance the accuracy of event retrieval. Finally, we rank the retrieved events and select the optimal one as QE, which is then used to improve the retrieval of event-related documents. Through offline analysis and online A/B testing, we observed that the EQE system has significantly improved many indicators compared to the baseline. The system has been deployed in a real production environment and serves hundreds of millions of users.
%R 10.18653/v1/2023.acl-industry.45
%U https://aclanthology.org/2023.acl-industry.45
%U https://doi.org/10.18653/v1/2023.acl-industry.45
%P 464-475
Markdown (Informal)
[Event-Centric Query Expansion in Web Search](https://aclanthology.org/2023.acl-industry.45) (Zhang et al., ACL 2023)
ACL
- Yanan Zhang, Weijie Cui, Yangfan Zhang, Xiaoling Bai, Zhe Zhang, Jin Ma, Xiang Chen, and Tianhua Zhou. 2023. Event-Centric Query Expansion in Web Search. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track), pages 464–475, Toronto, Canada. Association for Computational Linguistics.