@inproceedings{chai-etal-2023-improving,
title = "Improving Gradient Trade-offs between Tasks in Multi-task Text Classification",
author = "Chai, Heyan and
Cui, Jinhao and
Wang, Ye and
Zhang, Min and
Fang, Binxing and
Liao, Qing",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.144",
doi = "10.18653/v1/2023.acl-long.144",
pages = "2565--2579",
abstract = "Multi-task learning (MTL) has emerged as a promising approach for sharing inductive bias across multiple tasks to enable more efficient learning in text classification. However, training all tasks simultaneously often yields degraded performance of each task than learning them independently, since different tasks might conflict with each other. Existing MTL methods for alleviating this issue is to leverage heuristics or gradient-based algorithm to achieve an arbitrary Pareto optimal trade-off among different tasks. In this paper, we present a novel gradient trade-off approach to mitigate the task conflict problem, dubbed GetMTL, which can achieve a specific trade-off among different tasks nearby the main objective of multi-task text classification (MTC), so as to improve the performance of each task simultaneously. The results of extensive experiments on two benchmark datasets back up our theoretical analysis and validate the superiority of our proposed GetMTL.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chai-etal-2023-improving">
<titleInfo>
<title>Improving Gradient Trade-offs between Tasks in Multi-task Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heyan</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinhao</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ye</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binxing</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-task learning (MTL) has emerged as a promising approach for sharing inductive bias across multiple tasks to enable more efficient learning in text classification. However, training all tasks simultaneously often yields degraded performance of each task than learning them independently, since different tasks might conflict with each other. Existing MTL methods for alleviating this issue is to leverage heuristics or gradient-based algorithm to achieve an arbitrary Pareto optimal trade-off among different tasks. In this paper, we present a novel gradient trade-off approach to mitigate the task conflict problem, dubbed GetMTL, which can achieve a specific trade-off among different tasks nearby the main objective of multi-task text classification (MTC), so as to improve the performance of each task simultaneously. The results of extensive experiments on two benchmark datasets back up our theoretical analysis and validate the superiority of our proposed GetMTL.</abstract>
<identifier type="citekey">chai-etal-2023-improving</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.144</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.144</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>2565</start>
<end>2579</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Gradient Trade-offs between Tasks in Multi-task Text Classification
%A Chai, Heyan
%A Cui, Jinhao
%A Wang, Ye
%A Zhang, Min
%A Fang, Binxing
%A Liao, Qing
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F chai-etal-2023-improving
%X Multi-task learning (MTL) has emerged as a promising approach for sharing inductive bias across multiple tasks to enable more efficient learning in text classification. However, training all tasks simultaneously often yields degraded performance of each task than learning them independently, since different tasks might conflict with each other. Existing MTL methods for alleviating this issue is to leverage heuristics or gradient-based algorithm to achieve an arbitrary Pareto optimal trade-off among different tasks. In this paper, we present a novel gradient trade-off approach to mitigate the task conflict problem, dubbed GetMTL, which can achieve a specific trade-off among different tasks nearby the main objective of multi-task text classification (MTC), so as to improve the performance of each task simultaneously. The results of extensive experiments on two benchmark datasets back up our theoretical analysis and validate the superiority of our proposed GetMTL.
%R 10.18653/v1/2023.acl-long.144
%U https://aclanthology.org/2023.acl-long.144
%U https://doi.org/10.18653/v1/2023.acl-long.144
%P 2565-2579
Markdown (Informal)
[Improving Gradient Trade-offs between Tasks in Multi-task Text Classification](https://aclanthology.org/2023.acl-long.144) (Chai et al., ACL 2023)
ACL