Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification

Sha Li, Ruining Zhao, Manling Li, Heng Ji, Chris Callison-Burch, Jiawei Han


Abstract
Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method IncPrompt to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, IncSchema can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ~10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability.
Anthology ID:
2023.acl-long.312
Volume:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
5677–5697
Language:
URL:
https://aclanthology.org/2023.acl-long.312
DOI:
10.18653/v1/2023.acl-long.312
Bibkey:
Cite (ACL):
Sha Li, Ruining Zhao, Manling Li, Heng Ji, Chris Callison-Burch, and Jiawei Han. 2023. Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 5677–5697, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification (Li et al., ACL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.acl-long.312.pdf
Video:
 https://aclanthology.org/2023.acl-long.312.mp4