@inproceedings{yang-etal-2023-unsupervised,
title = "Unsupervised Discontinuous Constituency Parsing with Mildly Context-Sensitive Grammars",
author = "Yang, Songlin and
Levy, Roger and
Kim, Yoon",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.316",
doi = "10.18653/v1/2023.acl-long.316",
pages = "5747--5766",
abstract = "We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require $O(l^6)$ time to parse, reducing inference to $O(l^5)$. We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2023-unsupervised">
<titleInfo>
<title>Unsupervised Discontinuous Constituency Parsing with Mildly Context-Sensitive Grammars</title>
</titleInfo>
<name type="personal">
<namePart type="given">Songlin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roger</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require O(l⁶) time to parse, reducing inference to O(l⁵). We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures.</abstract>
<identifier type="citekey">yang-etal-2023-unsupervised</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.316</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.316</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>5747</start>
<end>5766</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Discontinuous Constituency Parsing with Mildly Context-Sensitive Grammars
%A Yang, Songlin
%A Levy, Roger
%A Kim, Yoon
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F yang-etal-2023-unsupervised
%X We study grammar induction with mildly context-sensitive grammars for unsupervised discontinuous parsing. Using the probabilistic linear context-free rewriting system (LCFRS) formalism, our approach fixes the rule structure in advance and focuses on parameter learning with maximum likelihood. To reduce the computational complexity of both parsing and parameter estimation, we restrict the grammar formalism to LCFRS-2 (i.e., binary LCFRS with fan-out two) and further discard rules that require O(l⁶) time to parse, reducing inference to O(l⁵). We find that using a large number of nonterminals is beneficial and thus make use of tensor decomposition-based rank-space dynamic programming with an embedding-based parameterization of rule probabilities to scale up the number of nonterminals. Experiments on German and Dutch show that our approach is able to induce linguistically meaningful trees with continuous and discontinuous structures.
%R 10.18653/v1/2023.acl-long.316
%U https://aclanthology.org/2023.acl-long.316
%U https://doi.org/10.18653/v1/2023.acl-long.316
%P 5747-5766
Markdown (Informal)
[Unsupervised Discontinuous Constituency Parsing with Mildly Context-Sensitive Grammars](https://aclanthology.org/2023.acl-long.316) (Yang et al., ACL 2023)
ACL