@inproceedings{zhao-etal-2023-improving,
title = "Improving Continual Relation Extraction by Distinguishing Analogous Semantics",
author = "Zhao, Wenzheng and
Cui, Yuanning and
Hu, Wei",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.65",
doi = "10.18653/v1/2023.acl-long.65",
pages = "1162--1175",
abstract = "Continual relation extraction (RE) aims to learn constantly emerging relations while avoiding forgetting the learned relations. Existing works store a small number of typical samples to re-train the model for alleviating forgetting. However, repeatedly replaying these samples may cause the overfitting problem. We conduct an empirical study on existing works and observe that their performance is severely affected by analogous relations. To address this issue, we propose a novel continual extraction model for analogous relations. Specifically, we design memory-insensitive relation prototypes and memory augmentation to overcome the overfitting problem. We also introduce integrated training and focal knowledge distillation to enhance the performance on analogous relations. Experimental results show the superiority of our model and demonstrate its effectiveness in distinguishing analogous relations and overcoming overfitting.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2023-improving">
<titleInfo>
<title>Improving Continual Relation Extraction by Distinguishing Analogous Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenzheng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanning</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Continual relation extraction (RE) aims to learn constantly emerging relations while avoiding forgetting the learned relations. Existing works store a small number of typical samples to re-train the model for alleviating forgetting. However, repeatedly replaying these samples may cause the overfitting problem. We conduct an empirical study on existing works and observe that their performance is severely affected by analogous relations. To address this issue, we propose a novel continual extraction model for analogous relations. Specifically, we design memory-insensitive relation prototypes and memory augmentation to overcome the overfitting problem. We also introduce integrated training and focal knowledge distillation to enhance the performance on analogous relations. Experimental results show the superiority of our model and demonstrate its effectiveness in distinguishing analogous relations and overcoming overfitting.</abstract>
<identifier type="citekey">zhao-etal-2023-improving</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.65</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.65</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1162</start>
<end>1175</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Continual Relation Extraction by Distinguishing Analogous Semantics
%A Zhao, Wenzheng
%A Cui, Yuanning
%A Hu, Wei
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F zhao-etal-2023-improving
%X Continual relation extraction (RE) aims to learn constantly emerging relations while avoiding forgetting the learned relations. Existing works store a small number of typical samples to re-train the model for alleviating forgetting. However, repeatedly replaying these samples may cause the overfitting problem. We conduct an empirical study on existing works and observe that their performance is severely affected by analogous relations. To address this issue, we propose a novel continual extraction model for analogous relations. Specifically, we design memory-insensitive relation prototypes and memory augmentation to overcome the overfitting problem. We also introduce integrated training and focal knowledge distillation to enhance the performance on analogous relations. Experimental results show the superiority of our model and demonstrate its effectiveness in distinguishing analogous relations and overcoming overfitting.
%R 10.18653/v1/2023.acl-long.65
%U https://aclanthology.org/2023.acl-long.65
%U https://doi.org/10.18653/v1/2023.acl-long.65
%P 1162-1175
Markdown (Informal)
[Improving Continual Relation Extraction by Distinguishing Analogous Semantics](https://aclanthology.org/2023.acl-long.65) (Zhao et al., ACL 2023)
ACL