@inproceedings{liu-etal-2023-mgr,
title = "{MGR}: Multi-generator Based Rationalization",
author = "Liu, Wei and
Wang, Haozhao and
Wang, Jun and
Li, Ruixuan and
Li, Xinyang and
Zhang, YuanKai and
Qiu, Yang",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.715/",
doi = "10.18653/v1/2023.acl-long.715",
pages = "12771--12787",
abstract = "Rationalization is to employ a generator and a predictor to construct a self-explaining NLP model in which the generator selects a subset of human-intelligible pieces of the input text to the following predictor. However, rationalization suffers from two key challenges, i.e., spurious correlation and degeneration, where the predictor overfits the spurious or meaningless pieces solely selected by the not-yet well-trained generator and in turn deteriorates the generator. Although many studies have been proposed to address the two challenges, they are usually designed separately and do not take both of them into account. In this paper, we propose a simple yet effective method named MGR to simultaneously solve the two problems. The key idea of MGR is to employ multiple generators such that the occurrence stability of real pieces is improved and more meaningful pieces are delivered to the predictor. Empirically, we show that MGR improves the F1 score by up to 20.9{\%} as compared to state-of-the-art methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2023-mgr">
<titleInfo>
<title>MGR: Multi-generator Based Rationalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haozhao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruixuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">YuanKai</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Rationalization is to employ a generator and a predictor to construct a self-explaining NLP model in which the generator selects a subset of human-intelligible pieces of the input text to the following predictor. However, rationalization suffers from two key challenges, i.e., spurious correlation and degeneration, where the predictor overfits the spurious or meaningless pieces solely selected by the not-yet well-trained generator and in turn deteriorates the generator. Although many studies have been proposed to address the two challenges, they are usually designed separately and do not take both of them into account. In this paper, we propose a simple yet effective method named MGR to simultaneously solve the two problems. The key idea of MGR is to employ multiple generators such that the occurrence stability of real pieces is improved and more meaningful pieces are delivered to the predictor. Empirically, we show that MGR improves the F1 score by up to 20.9% as compared to state-of-the-art methods.</abstract>
<identifier type="citekey">liu-etal-2023-mgr</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.715</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.715/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>12771</start>
<end>12787</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MGR: Multi-generator Based Rationalization
%A Liu, Wei
%A Wang, Haozhao
%A Wang, Jun
%A Li, Ruixuan
%A Li, Xinyang
%A Zhang, YuanKai
%A Qiu, Yang
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F liu-etal-2023-mgr
%X Rationalization is to employ a generator and a predictor to construct a self-explaining NLP model in which the generator selects a subset of human-intelligible pieces of the input text to the following predictor. However, rationalization suffers from two key challenges, i.e., spurious correlation and degeneration, where the predictor overfits the spurious or meaningless pieces solely selected by the not-yet well-trained generator and in turn deteriorates the generator. Although many studies have been proposed to address the two challenges, they are usually designed separately and do not take both of them into account. In this paper, we propose a simple yet effective method named MGR to simultaneously solve the two problems. The key idea of MGR is to employ multiple generators such that the occurrence stability of real pieces is improved and more meaningful pieces are delivered to the predictor. Empirically, we show that MGR improves the F1 score by up to 20.9% as compared to state-of-the-art methods.
%R 10.18653/v1/2023.acl-long.715
%U https://aclanthology.org/2023.acl-long.715/
%U https://doi.org/10.18653/v1/2023.acl-long.715
%P 12771-12787
Markdown (Informal)
[MGR: Multi-generator Based Rationalization](https://aclanthology.org/2023.acl-long.715/) (Liu et al., ACL 2023)
ACL
- Wei Liu, Haozhao Wang, Jun Wang, Ruixuan Li, Xinyang Li, YuanKai Zhang, and Yang Qiu. 2023. MGR: Multi-generator Based Rationalization. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12771–12787, Toronto, Canada. Association for Computational Linguistics.