Target-Based Offensive Language Identification

Marcos Zampieri, Skye Morgan, Kai North, Tharindu Ranasinghe, Austin Simmmons, Paridhi Khandelwal, Sara Rosenthal, Preslav Nakov


Abstract
We present TBO, a new dataset for Target-based Offensive language identification. TBO contains post-level annotations regarding the harmfulness of an offensive post and token-level annotations comprising of the target and the offensive argument expression. Popular offensive language identification datasets for social media focus on annotation taxonomies only at the post level and more recently, some datasets have been released that feature only token-level annotations. TBO is an important resource that bridges the gap between post-level and token-level annotation datasets by introducing a single comprehensive unified annotation taxonomy. We use the TBO taxonomy to annotate post-level and token-level offensive language on English Twitter posts. We release an initial dataset of over 4,500 instances collected from Twitter and we carry out multiple experiments to compare the performance of different models trained and tested on TBO.
Anthology ID:
2023.acl-short.66
Volume:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
762–770
Language:
URL:
https://aclanthology.org/2023.acl-short.66
DOI:
10.18653/v1/2023.acl-short.66
Bibkey:
Cite (ACL):
Marcos Zampieri, Skye Morgan, Kai North, Tharindu Ranasinghe, Austin Simmmons, Paridhi Khandelwal, Sara Rosenthal, and Preslav Nakov. 2023. Target-Based Offensive Language Identification. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 762–770, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
Target-Based Offensive Language Identification (Zampieri et al., ACL 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.acl-short.66.pdf