@inproceedings{cao-etal-2023-translating,
title = "Translating {A}ncient {C}hinese to {M}odern {C}hinese at Scale: A Large Language Model-based Approach",
author = "Cao, Jiahuan and
Peng, Dezhi and
Shi, Yongxin and
Jiang, Zongyuan and
Jin, Lianwen",
booktitle = "Proceedings of ALT2023: Ancient Language Translation Workshop",
month = sep,
year = "2023",
address = "Macau SAR, China",
publisher = "Asia-Pacific Association for Machine Translation",
url = "https://aclanthology.org/2023.alt-1.9/",
pages = "61--69",
abstract = "Recently, the emergence of large language models (LLMs) has provided powerful foundation models for a wide range of natural language processing (NLP) tasks. However, the vast majority of the pre-training corpus for most existing LLMs is in English, resulting in their Chinese proficiency falling far behind that of English. Furthermore, ancient Chinese has a much larger vocabulary and less available corpus than modern Chinese, which significantly challenges the generalization capacity of existing LLMs. In this paper, we investigate the Ancient-Chinese-to-Modern-Chinese (A2M) translation using LLMs including LLaMA and Ziya. Specifically, to improve the understanding of Chinese texts, we explore the vocabulary expansion and incremental pre-training methods based on existing pre-trained LLMs. Subsequently, a large-scale A2M translation dataset with 4M pairs is utilized to finetune the LLMs.Experimental results demonstrate the effectiveness of the proposed method, especially with Ziya-13B, in translating ancient Chinese to modern Chinese. Moreover,we deeply analyze the performance of various LLMs with different strategies, which we believe can benefit further research on LLM-based A2M approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cao-etal-2023-translating">
<titleInfo>
<title>Translating Ancient Chinese to Modern Chinese at Scale: A Large Language Model-based Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiahuan</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dezhi</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongxin</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zongyuan</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lianwen</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of ALT2023: Ancient Language Translation Workshop</title>
</titleInfo>
<originInfo>
<publisher>Asia-Pacific Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Macau SAR, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, the emergence of large language models (LLMs) has provided powerful foundation models for a wide range of natural language processing (NLP) tasks. However, the vast majority of the pre-training corpus for most existing LLMs is in English, resulting in their Chinese proficiency falling far behind that of English. Furthermore, ancient Chinese has a much larger vocabulary and less available corpus than modern Chinese, which significantly challenges the generalization capacity of existing LLMs. In this paper, we investigate the Ancient-Chinese-to-Modern-Chinese (A2M) translation using LLMs including LLaMA and Ziya. Specifically, to improve the understanding of Chinese texts, we explore the vocabulary expansion and incremental pre-training methods based on existing pre-trained LLMs. Subsequently, a large-scale A2M translation dataset with 4M pairs is utilized to finetune the LLMs.Experimental results demonstrate the effectiveness of the proposed method, especially with Ziya-13B, in translating ancient Chinese to modern Chinese. Moreover,we deeply analyze the performance of various LLMs with different strategies, which we believe can benefit further research on LLM-based A2M approaches.</abstract>
<identifier type="citekey">cao-etal-2023-translating</identifier>
<location>
<url>https://aclanthology.org/2023.alt-1.9/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>61</start>
<end>69</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Translating Ancient Chinese to Modern Chinese at Scale: A Large Language Model-based Approach
%A Cao, Jiahuan
%A Peng, Dezhi
%A Shi, Yongxin
%A Jiang, Zongyuan
%A Jin, Lianwen
%S Proceedings of ALT2023: Ancient Language Translation Workshop
%D 2023
%8 September
%I Asia-Pacific Association for Machine Translation
%C Macau SAR, China
%F cao-etal-2023-translating
%X Recently, the emergence of large language models (LLMs) has provided powerful foundation models for a wide range of natural language processing (NLP) tasks. However, the vast majority of the pre-training corpus for most existing LLMs is in English, resulting in their Chinese proficiency falling far behind that of English. Furthermore, ancient Chinese has a much larger vocabulary and less available corpus than modern Chinese, which significantly challenges the generalization capacity of existing LLMs. In this paper, we investigate the Ancient-Chinese-to-Modern-Chinese (A2M) translation using LLMs including LLaMA and Ziya. Specifically, to improve the understanding of Chinese texts, we explore the vocabulary expansion and incremental pre-training methods based on existing pre-trained LLMs. Subsequently, a large-scale A2M translation dataset with 4M pairs is utilized to finetune the LLMs.Experimental results demonstrate the effectiveness of the proposed method, especially with Ziya-13B, in translating ancient Chinese to modern Chinese. Moreover,we deeply analyze the performance of various LLMs with different strategies, which we believe can benefit further research on LLM-based A2M approaches.
%U https://aclanthology.org/2023.alt-1.9/
%P 61-69
Markdown (Informal)
[Translating Ancient Chinese to Modern Chinese at Scale: A Large Language Model-based Approach](https://aclanthology.org/2023.alt-1.9/) (Cao et al., alt 2023)
ACL