@inproceedings{schaefer-etal-2023-towards,
title = "Towards Fine-Grained Argumentation Strategy Analysis in Persuasive Essays",
author = "Schaefer, Robin and
Knaebel, Ren{\'e} and
Stede, Manfred",
editor = "Alshomary, Milad and
Chen, Chung-Chi and
Muresan, Smaranda and
Park, Joonsuk and
Romberg, Julia",
booktitle = "Proceedings of the 10th Workshop on Argument Mining",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.argmining-1.8/",
doi = "10.18653/v1/2023.argmining-1.8",
pages = "76--88",
abstract = "We define an argumentation strategy as the set of rhetorical and stylistic means that authors employ to produce an effective, and often persuasive, text. First computational accounts of such strategies have been relatively coarse-grained, while in our work we aim to move to a more detailed analysis. We extend the annotations of the Argument Annotated Essays corpus (Stab and Gurevych, 2017) with specific types of claims and premises, propose a model for their automatic identification and show first results, and then we discuss usage patterns that emerge with respect to the essay structure, the {\textquotedblleft}flows{\textquotedblright} of argument component types, the claim-premise constellations, the role of the essay prompt type, and that of the individual author."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schaefer-etal-2023-towards">
<titleInfo>
<title>Towards Fine-Grained Argumentation Strategy Analysis in Persuasive Essays</title>
</titleInfo>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Schaefer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">René</namePart>
<namePart type="family">Knaebel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Alshomary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joonsuk</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Romberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We define an argumentation strategy as the set of rhetorical and stylistic means that authors employ to produce an effective, and often persuasive, text. First computational accounts of such strategies have been relatively coarse-grained, while in our work we aim to move to a more detailed analysis. We extend the annotations of the Argument Annotated Essays corpus (Stab and Gurevych, 2017) with specific types of claims and premises, propose a model for their automatic identification and show first results, and then we discuss usage patterns that emerge with respect to the essay structure, the “flows” of argument component types, the claim-premise constellations, the role of the essay prompt type, and that of the individual author.</abstract>
<identifier type="citekey">schaefer-etal-2023-towards</identifier>
<identifier type="doi">10.18653/v1/2023.argmining-1.8</identifier>
<location>
<url>https://aclanthology.org/2023.argmining-1.8/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>76</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Fine-Grained Argumentation Strategy Analysis in Persuasive Essays
%A Schaefer, Robin
%A Knaebel, René
%A Stede, Manfred
%Y Alshomary, Milad
%Y Chen, Chung-Chi
%Y Muresan, Smaranda
%Y Park, Joonsuk
%Y Romberg, Julia
%S Proceedings of the 10th Workshop on Argument Mining
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F schaefer-etal-2023-towards
%X We define an argumentation strategy as the set of rhetorical and stylistic means that authors employ to produce an effective, and often persuasive, text. First computational accounts of such strategies have been relatively coarse-grained, while in our work we aim to move to a more detailed analysis. We extend the annotations of the Argument Annotated Essays corpus (Stab and Gurevych, 2017) with specific types of claims and premises, propose a model for their automatic identification and show first results, and then we discuss usage patterns that emerge with respect to the essay structure, the “flows” of argument component types, the claim-premise constellations, the role of the essay prompt type, and that of the individual author.
%R 10.18653/v1/2023.argmining-1.8
%U https://aclanthology.org/2023.argmining-1.8/
%U https://doi.org/10.18653/v1/2023.argmining-1.8
%P 76-88
Markdown (Informal)
[Towards Fine-Grained Argumentation Strategy Analysis in Persuasive Essays](https://aclanthology.org/2023.argmining-1.8/) (Schaefer et al., ArgMining 2023)
ACL