@inproceedings{chakma-hasan-2023-lowresource,
title = "{L}ow{R}esource at {BLP}-2023 Task 2: Leveraging {B}angla{B}ert for Low Resource Sentiment Analysis of {B}angla Language",
author = "Chakma, Aunabil and
Hasan, Masum",
editor = "Alam, Firoj and
Kar, Sudipta and
Chowdhury, Shammur Absar and
Sadeque, Farig and
Amin, Ruhul",
booktitle = "Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.banglalp-1.47/",
doi = "10.18653/v1/2023.banglalp-1.47",
pages = "347--353",
abstract = "This paper describes the system of the LowResource Team for Task 2 of BLP-2023, which involves conducting sentiment analysis on a dataset composed of public posts and comments from diverse social media platforms. Our primary aim was to utilize BanglaBert, a BERT model pre-trained on a large Bangla corpus, using various strategies including fine-tuning, dropping random tokens, and using several external datasets. Our final model is an ensemble of the three best BanglaBert variations. Our system achieved overall 3rd in the Test Set among 30 participating teams with a score of 0.718. Additionally, we discuss the promising systems that didn`t perform well namely task-adaptive pertaining and paraphrasing using BanglaT5. Our training codes are publicly available at https://github.com/Aunabil4602/bnlp-workshop-task2-2023"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chakma-hasan-2023-lowresource">
<titleInfo>
<title>LowResource at BLP-2023 Task 2: Leveraging BanglaBert for Low Resource Sentiment Analysis of Bangla Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aunabil</namePart>
<namePart type="family">Chakma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masum</namePart>
<namePart type="family">Hasan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="given">Absar</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farig</namePart>
<namePart type="family">Sadeque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruhul</namePart>
<namePart type="family">Amin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system of the LowResource Team for Task 2 of BLP-2023, which involves conducting sentiment analysis on a dataset composed of public posts and comments from diverse social media platforms. Our primary aim was to utilize BanglaBert, a BERT model pre-trained on a large Bangla corpus, using various strategies including fine-tuning, dropping random tokens, and using several external datasets. Our final model is an ensemble of the three best BanglaBert variations. Our system achieved overall 3rd in the Test Set among 30 participating teams with a score of 0.718. Additionally, we discuss the promising systems that didn‘t perform well namely task-adaptive pertaining and paraphrasing using BanglaT5. Our training codes are publicly available at https://github.com/Aunabil4602/bnlp-workshop-task2-2023</abstract>
<identifier type="citekey">chakma-hasan-2023-lowresource</identifier>
<identifier type="doi">10.18653/v1/2023.banglalp-1.47</identifier>
<location>
<url>https://aclanthology.org/2023.banglalp-1.47/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>347</start>
<end>353</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LowResource at BLP-2023 Task 2: Leveraging BanglaBert for Low Resource Sentiment Analysis of Bangla Language
%A Chakma, Aunabil
%A Hasan, Masum
%Y Alam, Firoj
%Y Kar, Sudipta
%Y Chowdhury, Shammur Absar
%Y Sadeque, Farig
%Y Amin, Ruhul
%S Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F chakma-hasan-2023-lowresource
%X This paper describes the system of the LowResource Team for Task 2 of BLP-2023, which involves conducting sentiment analysis on a dataset composed of public posts and comments from diverse social media platforms. Our primary aim was to utilize BanglaBert, a BERT model pre-trained on a large Bangla corpus, using various strategies including fine-tuning, dropping random tokens, and using several external datasets. Our final model is an ensemble of the three best BanglaBert variations. Our system achieved overall 3rd in the Test Set among 30 participating teams with a score of 0.718. Additionally, we discuss the promising systems that didn‘t perform well namely task-adaptive pertaining and paraphrasing using BanglaT5. Our training codes are publicly available at https://github.com/Aunabil4602/bnlp-workshop-task2-2023
%R 10.18653/v1/2023.banglalp-1.47
%U https://aclanthology.org/2023.banglalp-1.47/
%U https://doi.org/10.18653/v1/2023.banglalp-1.47
%P 347-353
Markdown (Informal)
[LowResource at BLP-2023 Task 2: Leveraging BanglaBert for Low Resource Sentiment Analysis of Bangla Language](https://aclanthology.org/2023.banglalp-1.47/) (Chakma & Hasan, BanglaLP 2023)
ACL