@inproceedings{sieker-zarriess-2023-language,
title = "When Your Language Model Cannot {E}ven Do Determiners Right: Probing for Anti-Presuppositions and the Maximize Presupposition! Principle",
author = "Sieker, Judith and
Zarrie{\ss}, Sina",
editor = "Belinkov, Yonatan and
Hao, Sophie and
Jumelet, Jaap and
Kim, Najoung and
McCarthy, Arya and
Mohebbi, Hosein",
booktitle = "Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.blackboxnlp-1.14/",
doi = "10.18653/v1/2023.blackboxnlp-1.14",
pages = "180--198",
abstract = "The increasing interest in probing the linguistic capabilities of large language models (LLMs) has long reached the area of semantics and pragmatics, including the phenomenon of presuppositions. In this study, we investigate a phenomenon that, however, has not yet been investigated, i.e., the phenomenon of anti-presupposition and the principle that accounts for it, the Maximize Presupposition! principle (MP!). Through an experimental investigation using psycholinguistic data and four open-source BERT model variants, we explore how language models handle different anti-presuppositions and whether they apply the MP! principle in their predictions. Further, we examine whether fine-tuning with Natural Language Inference data impacts adherence to the MP! principle. Our findings reveal that LLMs tend to replicate context-based n-grams rather than follow the MP! principle, with fine-tuning not enhancing their adherence. Notably, our results further indicate a striking difficulty of LLMs to correctly predict determiners, in relatively simple linguistic contexts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sieker-zarriess-2023-language">
<titleInfo>
<title>When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-Presuppositions and the Maximize Presupposition! Principle</title>
</titleInfo>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Sieker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophie</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaap</namePart>
<namePart type="family">Jumelet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Najoung</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arya</namePart>
<namePart type="family">McCarthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hosein</namePart>
<namePart type="family">Mohebbi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The increasing interest in probing the linguistic capabilities of large language models (LLMs) has long reached the area of semantics and pragmatics, including the phenomenon of presuppositions. In this study, we investigate a phenomenon that, however, has not yet been investigated, i.e., the phenomenon of anti-presupposition and the principle that accounts for it, the Maximize Presupposition! principle (MP!). Through an experimental investigation using psycholinguistic data and four open-source BERT model variants, we explore how language models handle different anti-presuppositions and whether they apply the MP! principle in their predictions. Further, we examine whether fine-tuning with Natural Language Inference data impacts adherence to the MP! principle. Our findings reveal that LLMs tend to replicate context-based n-grams rather than follow the MP! principle, with fine-tuning not enhancing their adherence. Notably, our results further indicate a striking difficulty of LLMs to correctly predict determiners, in relatively simple linguistic contexts.</abstract>
<identifier type="citekey">sieker-zarriess-2023-language</identifier>
<identifier type="doi">10.18653/v1/2023.blackboxnlp-1.14</identifier>
<location>
<url>https://aclanthology.org/2023.blackboxnlp-1.14/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>180</start>
<end>198</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-Presuppositions and the Maximize Presupposition! Principle
%A Sieker, Judith
%A Zarrieß, Sina
%Y Belinkov, Yonatan
%Y Hao, Sophie
%Y Jumelet, Jaap
%Y Kim, Najoung
%Y McCarthy, Arya
%Y Mohebbi, Hosein
%S Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F sieker-zarriess-2023-language
%X The increasing interest in probing the linguistic capabilities of large language models (LLMs) has long reached the area of semantics and pragmatics, including the phenomenon of presuppositions. In this study, we investigate a phenomenon that, however, has not yet been investigated, i.e., the phenomenon of anti-presupposition and the principle that accounts for it, the Maximize Presupposition! principle (MP!). Through an experimental investigation using psycholinguistic data and four open-source BERT model variants, we explore how language models handle different anti-presuppositions and whether they apply the MP! principle in their predictions. Further, we examine whether fine-tuning with Natural Language Inference data impacts adherence to the MP! principle. Our findings reveal that LLMs tend to replicate context-based n-grams rather than follow the MP! principle, with fine-tuning not enhancing their adherence. Notably, our results further indicate a striking difficulty of LLMs to correctly predict determiners, in relatively simple linguistic contexts.
%R 10.18653/v1/2023.blackboxnlp-1.14
%U https://aclanthology.org/2023.blackboxnlp-1.14/
%U https://doi.org/10.18653/v1/2023.blackboxnlp-1.14
%P 180-198
Markdown (Informal)
[When Your Language Model Cannot Even Do Determiners Right: Probing for Anti-Presuppositions and the Maximize Presupposition! Principle](https://aclanthology.org/2023.blackboxnlp-1.14/) (Sieker & Zarrieß, BlackboxNLP 2023)
ACL