@inproceedings{suba-etal-2023-wikigoldsk,
title = "{W}iki{G}old{SK}: Annotated Dataset, Baselines and Few-Shot Learning Experiments for {S}lovak Named Entity Recognition",
author = "Suba, David and
Suppa, Marek and
Kubik, Jozef and
Hamerlik, Endre and
Takac, Martin",
editor = "Piskorski, Jakub and
Marci{\'n}czuk, Micha{\l} and
Nakov, Preslav and
Ogrodniczuk, Maciej and
Pollak, Senja and
P{\v{r}}ib{\'a}{\v{n}}, Pavel and
Rybak, Piotr and
Steinberger, Josef and
Yangarber, Roman",
booktitle = "Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.bsnlp-1.16/",
doi = "10.18653/v1/2023.bsnlp-1.16",
pages = "138--145",
abstract = "Named Entity Recognition (NER) is a fundamental NLP tasks with a wide range of practical applications. The performance of state-of-the-art NER methods depends on high quality manually anotated datasets which still do not exist for some languages. In this work we aim to remedy this situation in Slovak by introducing WikiGoldSK, the first sizable human labelled Slovak NER dataset. We benchmark it by evaluating state-of-the-art multilingual Pretrained Language Models and comparing it to the existing silver-standard Slovak NER dataset. We also conduct few-shot experiments and show that training on a sliver-standard dataset yields better results. To enable future work that can be based on Slovak NER, we release the dataset, code, as well as the trained models publicly under permissible licensing terms at \url{https://github.com/NaiveNeuron/WikiGoldSK}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suba-etal-2023-wikigoldsk">
<titleInfo>
<title>WikiGoldSK: Annotated Dataset, Baselines and Few-Shot Learning Experiments for Slovak Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Suba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Suppa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jozef</namePart>
<namePart type="family">Kubik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Endre</namePart>
<namePart type="family">Hamerlik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Takac</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michał</namePart>
<namePart type="family">Marcińczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Senja</namePart>
<namePart type="family">Pollak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pavel</namePart>
<namePart type="family">Přibáň</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piotr</namePart>
<namePart type="family">Rybak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named Entity Recognition (NER) is a fundamental NLP tasks with a wide range of practical applications. The performance of state-of-the-art NER methods depends on high quality manually anotated datasets which still do not exist for some languages. In this work we aim to remedy this situation in Slovak by introducing WikiGoldSK, the first sizable human labelled Slovak NER dataset. We benchmark it by evaluating state-of-the-art multilingual Pretrained Language Models and comparing it to the existing silver-standard Slovak NER dataset. We also conduct few-shot experiments and show that training on a sliver-standard dataset yields better results. To enable future work that can be based on Slovak NER, we release the dataset, code, as well as the trained models publicly under permissible licensing terms at https://github.com/NaiveNeuron/WikiGoldSK</abstract>
<identifier type="citekey">suba-etal-2023-wikigoldsk</identifier>
<identifier type="doi">10.18653/v1/2023.bsnlp-1.16</identifier>
<location>
<url>https://aclanthology.org/2023.bsnlp-1.16/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>138</start>
<end>145</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T WikiGoldSK: Annotated Dataset, Baselines and Few-Shot Learning Experiments for Slovak Named Entity Recognition
%A Suba, David
%A Suppa, Marek
%A Kubik, Jozef
%A Hamerlik, Endre
%A Takac, Martin
%Y Piskorski, Jakub
%Y Marcińczuk, Michał
%Y Nakov, Preslav
%Y Ogrodniczuk, Maciej
%Y Pollak, Senja
%Y Přibáň, Pavel
%Y Rybak, Piotr
%Y Steinberger, Josef
%Y Yangarber, Roman
%S Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F suba-etal-2023-wikigoldsk
%X Named Entity Recognition (NER) is a fundamental NLP tasks with a wide range of practical applications. The performance of state-of-the-art NER methods depends on high quality manually anotated datasets which still do not exist for some languages. In this work we aim to remedy this situation in Slovak by introducing WikiGoldSK, the first sizable human labelled Slovak NER dataset. We benchmark it by evaluating state-of-the-art multilingual Pretrained Language Models and comparing it to the existing silver-standard Slovak NER dataset. We also conduct few-shot experiments and show that training on a sliver-standard dataset yields better results. To enable future work that can be based on Slovak NER, we release the dataset, code, as well as the trained models publicly under permissible licensing terms at https://github.com/NaiveNeuron/WikiGoldSK
%R 10.18653/v1/2023.bsnlp-1.16
%U https://aclanthology.org/2023.bsnlp-1.16/
%U https://doi.org/10.18653/v1/2023.bsnlp-1.16
%P 138-145
Markdown (Informal)
[WikiGoldSK: Annotated Dataset, Baselines and Few-Shot Learning Experiments for Slovak Named Entity Recognition](https://aclanthology.org/2023.bsnlp-1.16/) (Suba et al., BSNLP 2023)
ACL