@inproceedings{yong-etal-2023-prompting,
title = "Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South {E}ast {A}sian Languages",
author = "Yong, Zheng Xin and
Zhang, Ruochen and
Forde, Jessica and
Wang, Skyler and
Subramonian, Arjun and
Lovenia, Holy and
Cahyawijaya, Samuel and
Winata, Genta and
Sutawika, Lintang and
Cruz, Jan Christian Blaise and
Tan, Yin Lin and
Phan, Long and
Phan, Long and
Garcia, Rowena and
Solorio, Thamar and
Aji, Alham Fikri",
editor = "Winata, Genta and
Kar, Sudipta and
Zhukova, Marina and
Solorio, Thamar and
Diab, Mona and
Sitaram, Sunayana and
Choudhury, Monojit and
Bali, Kalika",
booktitle = "Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.calcs-1.5/",
pages = "43--63",
abstract = "While code-mixing is a common linguistic practice in many parts of the world, collecting high-quality and low-cost code-mixed data remains a challenge for natural language processing (NLP) research. The recent proliferation of Large Language Models (LLMs) compels one to ask: how capable are these systems in generating code-mixed data? In this paper, we explore prompting multilingual LLMs in a zero-shot manner to generate code-mixed data for seven languages in South East Asia (SEA), namely Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish. We find that publicly available multilingual instruction-tuned models such as BLOOMZ and Flan-T5-XXL are incapable of producing texts with phrases or clauses from different languages. ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its per-formance varies depending on the prompt template and language pairing. For instance, ChatGPT generates fluent and natural Singlish texts (an English-based creole spoken in Singapore), but for English-Tamil language pair, the system mostly produces grammatically incorrect or semantically meaningless utterances. Furthermore, it may erroneously introduce languages not specified in the prompt. Based on our investigation, existing multilingual LLMs exhibit a wide range of proficiency in code-mixed data generation for SEA languages. As such, we advise against using LLMs in this context without extensive human checks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yong-etal-2023-prompting">
<titleInfo>
<title>Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="given">Xin</namePart>
<namePart type="family">Yong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruochen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Forde</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Skyler</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Subramonian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Holy</namePart>
<namePart type="family">Lovenia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Cahyawijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Genta</namePart>
<namePart type="family">Winata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lintang</namePart>
<namePart type="family">Sutawika</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">Christian</namePart>
<namePart type="given">Blaise</namePart>
<namePart type="family">Cruz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yin</namePart>
<namePart type="given">Lin</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Long</namePart>
<namePart type="family">Phan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rowena</namePart>
<namePart type="family">Garcia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alham</namePart>
<namePart type="given">Fikri</namePart>
<namePart type="family">Aji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Genta</namePart>
<namePart type="family">Winata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marina</namePart>
<namePart type="family">Zhukova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunayana</namePart>
<namePart type="family">Sitaram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monojit</namePart>
<namePart type="family">Choudhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While code-mixing is a common linguistic practice in many parts of the world, collecting high-quality and low-cost code-mixed data remains a challenge for natural language processing (NLP) research. The recent proliferation of Large Language Models (LLMs) compels one to ask: how capable are these systems in generating code-mixed data? In this paper, we explore prompting multilingual LLMs in a zero-shot manner to generate code-mixed data for seven languages in South East Asia (SEA), namely Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish. We find that publicly available multilingual instruction-tuned models such as BLOOMZ and Flan-T5-XXL are incapable of producing texts with phrases or clauses from different languages. ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its per-formance varies depending on the prompt template and language pairing. For instance, ChatGPT generates fluent and natural Singlish texts (an English-based creole spoken in Singapore), but for English-Tamil language pair, the system mostly produces grammatically incorrect or semantically meaningless utterances. Furthermore, it may erroneously introduce languages not specified in the prompt. Based on our investigation, existing multilingual LLMs exhibit a wide range of proficiency in code-mixed data generation for SEA languages. As such, we advise against using LLMs in this context without extensive human checks.</abstract>
<identifier type="citekey">yong-etal-2023-prompting</identifier>
<location>
<url>https://aclanthology.org/2023.calcs-1.5/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>43</start>
<end>63</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages
%A Yong, Zheng Xin
%A Zhang, Ruochen
%A Forde, Jessica
%A Wang, Skyler
%A Subramonian, Arjun
%A Lovenia, Holy
%A Cahyawijaya, Samuel
%A Winata, Genta
%A Sutawika, Lintang
%A Cruz, Jan Christian Blaise
%A Tan, Yin Lin
%A Phan, Long
%A Garcia, Rowena
%A Solorio, Thamar
%A Aji, Alham Fikri
%Y Winata, Genta
%Y Kar, Sudipta
%Y Zhukova, Marina
%Y Solorio, Thamar
%Y Diab, Mona
%Y Sitaram, Sunayana
%Y Choudhury, Monojit
%Y Bali, Kalika
%S Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F yong-etal-2023-prompting
%X While code-mixing is a common linguistic practice in many parts of the world, collecting high-quality and low-cost code-mixed data remains a challenge for natural language processing (NLP) research. The recent proliferation of Large Language Models (LLMs) compels one to ask: how capable are these systems in generating code-mixed data? In this paper, we explore prompting multilingual LLMs in a zero-shot manner to generate code-mixed data for seven languages in South East Asia (SEA), namely Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish. We find that publicly available multilingual instruction-tuned models such as BLOOMZ and Flan-T5-XXL are incapable of producing texts with phrases or clauses from different languages. ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its per-formance varies depending on the prompt template and language pairing. For instance, ChatGPT generates fluent and natural Singlish texts (an English-based creole spoken in Singapore), but for English-Tamil language pair, the system mostly produces grammatically incorrect or semantically meaningless utterances. Furthermore, it may erroneously introduce languages not specified in the prompt. Based on our investigation, existing multilingual LLMs exhibit a wide range of proficiency in code-mixed data generation for SEA languages. As such, we advise against using LLMs in this context without extensive human checks.
%U https://aclanthology.org/2023.calcs-1.5/
%P 43-63
Markdown (Informal)
[Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages](https://aclanthology.org/2023.calcs-1.5/) (Yong et al., CALCS 2023)
ACL
- Zheng Xin Yong, Ruochen Zhang, Jessica Forde, Skyler Wang, Arjun Subramonian, Holy Lovenia, Samuel Cahyawijaya, Genta Winata, Lintang Sutawika, Jan Christian Blaise Cruz, Yin Lin Tan, Long Phan, Long Phan, Rowena Garcia, Thamar Solorio, and Alham Fikri Aji. 2023. Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages. In Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching, pages 43–63, Singapore. Association for Computational Linguistics.