@inproceedings{yu-etal-2023-ji,
title = "基于句法特征的事件要素抽取方法(Syntax-aware Event Argument Extraction )",
author = "Yu, Zijian and
Zhu, Tong and
Chen, Wenliang",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.18/",
pages = "196--207",
language = "zho",
abstract = "{\textquotedblleft}事件要素抽取(Event Argument Extraction, EAE)旨在从非结构化文本中提取事件参与要素。编码器{---}解码器(Encoder-Decoder)框架是处理该任务的一种常见策略,此前的研究大多只向编码器端输入文本的字词信息,导致模型泛化和远程依赖处理能力较弱。为此,本文提出一种融入句法信息的事件要素抽取模型。首先对文本分析得到成分句法解析树,将词性标签和各节点的句法成分标签编码,增强模型的文本表征能力。然后,本文提出了一种基于树结构的注意力机制(Tree-Attention)辅助模型更好地感知结构化语义信息,提高模型处理远距离依赖的能力。实验结果表明,本文所提方法相较于基线系统F1值提升2.02{\%},证明该方法的有效性。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2023-ji">
<titleInfo>
<title>基于句法特征的事件要素抽取方法(Syntax-aware Event Argument Extraction )</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zijian</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenliang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“事件要素抽取(Event Argument Extraction, EAE)旨在从非结构化文本中提取事件参与要素。编码器—解码器(Encoder-Decoder)框架是处理该任务的一种常见策略,此前的研究大多只向编码器端输入文本的字词信息,导致模型泛化和远程依赖处理能力较弱。为此,本文提出一种融入句法信息的事件要素抽取模型。首先对文本分析得到成分句法解析树,将词性标签和各节点的句法成分标签编码,增强模型的文本表征能力。然后,本文提出了一种基于树结构的注意力机制(Tree-Attention)辅助模型更好地感知结构化语义信息,提高模型处理远距离依赖的能力。实验结果表明,本文所提方法相较于基线系统F1值提升2.02%,证明该方法的有效性。”</abstract>
<identifier type="citekey">yu-etal-2023-ji</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-1.18/</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>196</start>
<end>207</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于句法特征的事件要素抽取方法(Syntax-aware Event Argument Extraction )
%A Yu, Zijian
%A Zhu, Tong
%A Chen, Wenliang
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G zho
%F yu-etal-2023-ji
%X “事件要素抽取(Event Argument Extraction, EAE)旨在从非结构化文本中提取事件参与要素。编码器—解码器(Encoder-Decoder)框架是处理该任务的一种常见策略,此前的研究大多只向编码器端输入文本的字词信息,导致模型泛化和远程依赖处理能力较弱。为此,本文提出一种融入句法信息的事件要素抽取模型。首先对文本分析得到成分句法解析树,将词性标签和各节点的句法成分标签编码,增强模型的文本表征能力。然后,本文提出了一种基于树结构的注意力机制(Tree-Attention)辅助模型更好地感知结构化语义信息,提高模型处理远距离依赖的能力。实验结果表明,本文所提方法相较于基线系统F1值提升2.02%,证明该方法的有效性。”
%U https://aclanthology.org/2023.ccl-1.18/
%P 196-207
Markdown (Informal)
[基于句法特征的事件要素抽取方法(Syntax-aware Event Argument Extraction )](https://aclanthology.org/2023.ccl-1.18/) (Yu et al., CCL 2023)
ACL