@inproceedings{cao-etal-2023-ji,
title = "基于{B}i{LSTM}聚合模型的汉语框架语义角色识别({C}hinese Frame Semantic Role Identification Based on {B}i{LSTM} Aggregation Model)",
author = "Cao, Xuefei and
Li, Hongji and
Wang, Ruibo and
Niu, Qian",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-1.38/",
pages = "434--443",
language = "zho",
abstract = "{\textquotedblleft}目前,基于神经网络的汉语框架语义角色识别模型的性能依然较低,考虑到神经网络模型的性能受到超参数的影响,本文将超参数调优和模型预测性能的提升统一到基于BiLSTM的聚合模型框架下解决。使用正则化交叉验证进行实验,通过正则化条件约束训练集和验证集的分布差异,避免分布不一致带来的性能波动。将交叉验证得到的结果进行众数投票,以投票后的结果对不同的超参数配置进行评估,并选择若干种没有显著差异的超参数配置构成最优的超参数配置集合。然后将最优的超参数配置集合对应的子模型进行聚合,构造汉语框架语义角色识别的聚合模型。实验结果显示,本文方法的性能较基准模型显著提升了9.56{\%}。{\textquotedblright}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cao-etal-2023-ji">
<titleInfo>
<title>基于BiLSTM聚合模型的汉语框架语义角色识别(Chinese Frame Semantic Role Identification Based on BiLSTM Aggregation Model)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuefei</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongji</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruibo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“目前,基于神经网络的汉语框架语义角色识别模型的性能依然较低,考虑到神经网络模型的性能受到超参数的影响,本文将超参数调优和模型预测性能的提升统一到基于BiLSTM的聚合模型框架下解决。使用正则化交叉验证进行实验,通过正则化条件约束训练集和验证集的分布差异,避免分布不一致带来的性能波动。将交叉验证得到的结果进行众数投票,以投票后的结果对不同的超参数配置进行评估,并选择若干种没有显著差异的超参数配置构成最优的超参数配置集合。然后将最优的超参数配置集合对应的子模型进行聚合,构造汉语框架语义角色识别的聚合模型。实验结果显示,本文方法的性能较基准模型显著提升了9.56%。”</abstract>
<identifier type="citekey">cao-etal-2023-ji</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-1.38/</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>434</start>
<end>443</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于BiLSTM聚合模型的汉语框架语义角色识别(Chinese Frame Semantic Role Identification Based on BiLSTM Aggregation Model)
%A Cao, Xuefei
%A Li, Hongji
%A Wang, Ruibo
%A Niu, Qian
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G zho
%F cao-etal-2023-ji
%X “目前,基于神经网络的汉语框架语义角色识别模型的性能依然较低,考虑到神经网络模型的性能受到超参数的影响,本文将超参数调优和模型预测性能的提升统一到基于BiLSTM的聚合模型框架下解决。使用正则化交叉验证进行实验,通过正则化条件约束训练集和验证集的分布差异,避免分布不一致带来的性能波动。将交叉验证得到的结果进行众数投票,以投票后的结果对不同的超参数配置进行评估,并选择若干种没有显著差异的超参数配置构成最优的超参数配置集合。然后将最优的超参数配置集合对应的子模型进行聚合,构造汉语框架语义角色识别的聚合模型。实验结果显示,本文方法的性能较基准模型显著提升了9.56%。”
%U https://aclanthology.org/2023.ccl-1.38/
%P 434-443
Markdown (Informal)
[基于BiLSTM聚合模型的汉语框架语义角色识别(Chinese Frame Semantic Role Identification Based on BiLSTM Aggregation Model)](https://aclanthology.org/2023.ccl-1.38/) (Cao et al., CCL 2023)
ACL