@inproceedings{wang-etal-2023-ccl23,
title = "{CCL}23-Eval 任务1系统报告:基于持续预训练方法与上下文增强策略的古籍命名实体识别(System Report for {CCL}23-Eval Task 1:Named Entity Recognition for Ancient Books based on Continual Pre-training Method and Context Augmentation Strategy)",
author = "Wang, Shiquan and
Shi, Lingling and
Pu, Luwen and
Fang, Ruiyu and
Zhao, Yu and
Song, Shuangyong",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-3.2",
pages = "14--22",
abstract = "{``}本文描述了队伍{``}翼智团{''}在CCL23古籍命名实体识别评测中提交的参赛系统。该任务旨在自动识别出古籍文本中人名、书名、官职名等事件基本构成要素的重要实体,并根据使用模型参数是否大于10b分为开放赛道和封闭赛道。该任务中,我们首先利用古籍相关的领域数据和任务数据对开源预训练模型进行持续预训练和微调,显著提升了基座模型在古籍命名实体识别任务上的性能表现。其次提出了一种基于pair-wise投票的不置信实体筛选算法用来得到候选实体,并对候选实体利用上下文增强策略进行实体识别修正。在最终的评估中,我们的系统在封闭赛道中排名第二,F1得分为95.8727。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2023-ccl23">
<titleInfo>
<title>CCL23-Eval 任务1系统报告:基于持续预训练方法与上下文增强策略的古籍命名实体识别(System Report for CCL23-Eval Task 1:Named Entity Recognition for Ancient Books based on Continual Pre-training Method and Context Augmentation Strategy)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiquan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingling</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luwen</namePart>
<namePart type="family">Pu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruiyu</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuangyong</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“本文描述了队伍“翼智团”在CCL23古籍命名实体识别评测中提交的参赛系统。该任务旨在自动识别出古籍文本中人名、书名、官职名等事件基本构成要素的重要实体,并根据使用模型参数是否大于10b分为开放赛道和封闭赛道。该任务中,我们首先利用古籍相关的领域数据和任务数据对开源预训练模型进行持续预训练和微调,显著提升了基座模型在古籍命名实体识别任务上的性能表现。其次提出了一种基于pair-wise投票的不置信实体筛选算法用来得到候选实体,并对候选实体利用上下文增强策略进行实体识别修正。在最终的评估中,我们的系统在封闭赛道中排名第二,F1得分为95.8727。”</abstract>
<identifier type="citekey">wang-etal-2023-ccl23</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-3.2</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>14</start>
<end>22</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CCL23-Eval 任务1系统报告:基于持续预训练方法与上下文增强策略的古籍命名实体识别(System Report for CCL23-Eval Task 1:Named Entity Recognition for Ancient Books based on Continual Pre-training Method and Context Augmentation Strategy)
%A Wang, Shiquan
%A Shi, Lingling
%A Pu, Luwen
%A Fang, Ruiyu
%A Zhao, Yu
%A Song, Shuangyong
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G Chinese
%F wang-etal-2023-ccl23
%X “本文描述了队伍“翼智团”在CCL23古籍命名实体识别评测中提交的参赛系统。该任务旨在自动识别出古籍文本中人名、书名、官职名等事件基本构成要素的重要实体,并根据使用模型参数是否大于10b分为开放赛道和封闭赛道。该任务中,我们首先利用古籍相关的领域数据和任务数据对开源预训练模型进行持续预训练和微调,显著提升了基座模型在古籍命名实体识别任务上的性能表现。其次提出了一种基于pair-wise投票的不置信实体筛选算法用来得到候选实体,并对候选实体利用上下文增强策略进行实体识别修正。在最终的评估中,我们的系统在封闭赛道中排名第二,F1得分为95.8727。”
%U https://aclanthology.org/2023.ccl-3.2
%P 14-22
Markdown (Informal)
[CCL23-Eval 任务1系统报告:基于持续预训练方法与上下文增强策略的古籍命名实体识别(System Report for CCL23-Eval Task 1:Named Entity Recognition for Ancient Books based on Continual Pre-training Method and Context Augmentation Strategy)](https://aclanthology.org/2023.ccl-3.2) (Wang et al., CCL 2023)
ACL