@inproceedings{dang-etal-2023-embedding,
title = "Embedding Mental Health Discourse for Community Recommendation",
author = "Dang, Hy and
Nguyen, Bang and
Ziems, Noah and
Jiang, Meng",
editor = "Strube, Michael and
Braud, Chloe and
Hardmeier, Christian and
Li, Junyi Jessy and
Loaiciga, Sharid and
Zeldes, Amir",
booktitle = "Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.codi-1.22",
doi = "10.18653/v1/2023.codi-1.22",
pages = "163--172",
abstract = "Our paper investigates the use of discourse embedding techniques to develop a community recommendation system that focuses on mental health support groups on social media. Social media platforms provide a means for users to anonymously connect with communities that cater to their specific interests. However, with the vast number of online communities available, users may face difficulties in identifying relevant groups to address their mental health concerns. To address this challenge, we explore the integration of discourse information from various subreddit communities using embedding techniques to develop an effective recommendation system. Our approach involves the use of content-based and collaborative filtering techniques to enhance the performance of the recommendation system. Our findings indicate that the proposed approach outperforms the use of each technique separately and provides interpretability in the recommendation process.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dang-etal-2023-embedding">
<titleInfo>
<title>Embedding Mental Health Discourse for Community Recommendation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hy</namePart>
<namePart type="family">Dang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bang</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noah</namePart>
<namePart type="family">Ziems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chloe</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharid</namePart>
<namePart type="family">Loaiciga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="family">Zeldes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our paper investigates the use of discourse embedding techniques to develop a community recommendation system that focuses on mental health support groups on social media. Social media platforms provide a means for users to anonymously connect with communities that cater to their specific interests. However, with the vast number of online communities available, users may face difficulties in identifying relevant groups to address their mental health concerns. To address this challenge, we explore the integration of discourse information from various subreddit communities using embedding techniques to develop an effective recommendation system. Our approach involves the use of content-based and collaborative filtering techniques to enhance the performance of the recommendation system. Our findings indicate that the proposed approach outperforms the use of each technique separately and provides interpretability in the recommendation process.</abstract>
<identifier type="citekey">dang-etal-2023-embedding</identifier>
<identifier type="doi">10.18653/v1/2023.codi-1.22</identifier>
<location>
<url>https://aclanthology.org/2023.codi-1.22</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>163</start>
<end>172</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Embedding Mental Health Discourse for Community Recommendation
%A Dang, Hy
%A Nguyen, Bang
%A Ziems, Noah
%A Jiang, Meng
%Y Strube, Michael
%Y Braud, Chloe
%Y Hardmeier, Christian
%Y Li, Junyi Jessy
%Y Loaiciga, Sharid
%Y Zeldes, Amir
%S Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F dang-etal-2023-embedding
%X Our paper investigates the use of discourse embedding techniques to develop a community recommendation system that focuses on mental health support groups on social media. Social media platforms provide a means for users to anonymously connect with communities that cater to their specific interests. However, with the vast number of online communities available, users may face difficulties in identifying relevant groups to address their mental health concerns. To address this challenge, we explore the integration of discourse information from various subreddit communities using embedding techniques to develop an effective recommendation system. Our approach involves the use of content-based and collaborative filtering techniques to enhance the performance of the recommendation system. Our findings indicate that the proposed approach outperforms the use of each technique separately and provides interpretability in the recommendation process.
%R 10.18653/v1/2023.codi-1.22
%U https://aclanthology.org/2023.codi-1.22
%U https://doi.org/10.18653/v1/2023.codi-1.22
%P 163-172
Markdown (Informal)
[Embedding Mental Health Discourse for Community Recommendation](https://aclanthology.org/2023.codi-1.22) (Dang et al., CODI 2023)
ACL