@inproceedings{calvo-bartolome-etal-2023-itmt,
title = "{ITMT}: Interactive Topic Model Trainer",
author = "Calvo Bartolom{\'e}, Lorena and
Espinosa Melchor, Jos{\'e} Antonio and
Arenas-garc{\'i}a, Jer{\'o}nimo",
editor = "Croce, Danilo and
Soldaini, Luca",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-demo.6/",
doi = "10.18653/v1/2023.eacl-demo.6",
pages = "43--49",
abstract = "Topic Modeling is a commonly used technique for analyzing unstructured data in various fields, but achieving accurate results and useful models can be challenging, especially for domain experts who lack the knowledge needed to optimize the parameters required by this natural language processing technique. From this perspective, we introduce an Interactive Topic Model Trainer (ITMT) developed within the EU-funded project IntelComp. ITMT is a user-in-the-loop topic modeling tool presented with a graphical user interface that allows the training and curation of different state-of-the-art topic extraction libraries, including some recent neural-based methods, oriented toward the usage by domain experts. This paper reviews ITMT`s functionalities and key implementation aspects in this paper, including a comparison with other tools for topic modeling analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="calvo-bartolome-etal-2023-itmt">
<titleInfo>
<title>ITMT: Interactive Topic Model Trainer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lorena</namePart>
<namePart type="family">Calvo Bartolomé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="given">Antonio</namePart>
<namePart type="family">Espinosa Melchor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jerónimo</namePart>
<namePart type="family">Arenas-garcía</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danilo</namePart>
<namePart type="family">Croce</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Soldaini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Topic Modeling is a commonly used technique for analyzing unstructured data in various fields, but achieving accurate results and useful models can be challenging, especially for domain experts who lack the knowledge needed to optimize the parameters required by this natural language processing technique. From this perspective, we introduce an Interactive Topic Model Trainer (ITMT) developed within the EU-funded project IntelComp. ITMT is a user-in-the-loop topic modeling tool presented with a graphical user interface that allows the training and curation of different state-of-the-art topic extraction libraries, including some recent neural-based methods, oriented toward the usage by domain experts. This paper reviews ITMT‘s functionalities and key implementation aspects in this paper, including a comparison with other tools for topic modeling analysis.</abstract>
<identifier type="citekey">calvo-bartolome-etal-2023-itmt</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-demo.6</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-demo.6/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>43</start>
<end>49</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ITMT: Interactive Topic Model Trainer
%A Calvo Bartolomé, Lorena
%A Espinosa Melchor, José Antonio
%A Arenas-garcía, Jerónimo
%Y Croce, Danilo
%Y Soldaini, Luca
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F calvo-bartolome-etal-2023-itmt
%X Topic Modeling is a commonly used technique for analyzing unstructured data in various fields, but achieving accurate results and useful models can be challenging, especially for domain experts who lack the knowledge needed to optimize the parameters required by this natural language processing technique. From this perspective, we introduce an Interactive Topic Model Trainer (ITMT) developed within the EU-funded project IntelComp. ITMT is a user-in-the-loop topic modeling tool presented with a graphical user interface that allows the training and curation of different state-of-the-art topic extraction libraries, including some recent neural-based methods, oriented toward the usage by domain experts. This paper reviews ITMT‘s functionalities and key implementation aspects in this paper, including a comparison with other tools for topic modeling analysis.
%R 10.18653/v1/2023.eacl-demo.6
%U https://aclanthology.org/2023.eacl-demo.6/
%U https://doi.org/10.18653/v1/2023.eacl-demo.6
%P 43-49
Markdown (Informal)
[ITMT: Interactive Topic Model Trainer](https://aclanthology.org/2023.eacl-demo.6/) (Calvo Bartolomé et al., EACL 2023)
ACL
- Lorena Calvo Bartolomé, José Antonio Espinosa Melchor, and Jerónimo Arenas-garcía. 2023. ITMT: Interactive Topic Model Trainer. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 43–49, Dubrovnik, Croatia. Association for Computational Linguistics.