@inproceedings{li-etal-2023-framebert,
title = "{F}rame{BERT}: Conceptual Metaphor Detection with Frame Embedding Learning",
author = "Li, Yucheng and
Wang, Shun and
Lin, Chenghua and
Guerin, Frank and
Barrault, Loic",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.114/",
doi = "10.18653/v1/2023.eacl-main.114",
pages = "1558--1563",
abstract = "In this paper, we propose FrameBERT, a BERT-based model that can explicitly learn and incorporate FrameNet Embeddings for concept-level metaphor detection. FrameBERT not only achieves better or comparable performance to the state-of-the-art, but also is more explainable and interpretable compared to existing models, attributing to its ability of accounting for external knowledge of FrameNet."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2023-framebert">
<titleInfo>
<title>FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yucheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Guerin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loic</namePart>
<namePart type="family">Barrault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose FrameBERT, a BERT-based model that can explicitly learn and incorporate FrameNet Embeddings for concept-level metaphor detection. FrameBERT not only achieves better or comparable performance to the state-of-the-art, but also is more explainable and interpretable compared to existing models, attributing to its ability of accounting for external knowledge of FrameNet.</abstract>
<identifier type="citekey">li-etal-2023-framebert</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-main.114</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-main.114/</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>1558</start>
<end>1563</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning
%A Li, Yucheng
%A Wang, Shun
%A Lin, Chenghua
%A Guerin, Frank
%A Barrault, Loic
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F li-etal-2023-framebert
%X In this paper, we propose FrameBERT, a BERT-based model that can explicitly learn and incorporate FrameNet Embeddings for concept-level metaphor detection. FrameBERT not only achieves better or comparable performance to the state-of-the-art, but also is more explainable and interpretable compared to existing models, attributing to its ability of accounting for external knowledge of FrameNet.
%R 10.18653/v1/2023.eacl-main.114
%U https://aclanthology.org/2023.eacl-main.114/
%U https://doi.org/10.18653/v1/2023.eacl-main.114
%P 1558-1563
Markdown (Informal)
[FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning](https://aclanthology.org/2023.eacl-main.114/) (Li et al., EACL 2023)
ACL