@inproceedings{singhal-etal-2023-assessing,
title = "Assessing Out-of-Domain Language Model Performance from Few Examples",
author = "Singhal, Prasann and
Forristal, Jarad and
Ye, Xi and
Durrett, Greg",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.175",
doi = "10.18653/v1/2023.eacl-main.175",
pages = "2385--2397",
abstract = "While pretrained language models have exhibited impressive generalization capabilities, they still behave unpredictably under certain domain shifts. In particular, a model may learn a reasoning process on in-domain training data that does not hold for out-of-domain test data. We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion: given a few target-domain examples and a set of models with similar training performance, can we understand how these models will perform on OOD test data? We benchmark the performance on this task when looking at model accuracy on the few-shot examples, then investigate how to incorporate analysis of the models{'} behavior using feature attributions to better tackle this problem. Specifically, we explore a set of factors designed to reveal model agreement with certain pathological heuristics that may indicate worse generalization capabilities. On textual entailment, paraphrase recognition, and a synthetic classification task, we show that attribution-based factors can help rank relative model OOD performance. However, accuracy on a few-shot test set is a surprisingly strong baseline, particularly when the system designer does not have in-depth prior knowledge about the domain shift.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singhal-etal-2023-assessing">
<titleInfo>
<title>Assessing Out-of-Domain Language Model Performance from Few Examples</title>
</titleInfo>
<name type="personal">
<namePart type="given">Prasann</namePart>
<namePart type="family">Singhal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jarad</namePart>
<namePart type="family">Forristal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While pretrained language models have exhibited impressive generalization capabilities, they still behave unpredictably under certain domain shifts. In particular, a model may learn a reasoning process on in-domain training data that does not hold for out-of-domain test data. We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion: given a few target-domain examples and a set of models with similar training performance, can we understand how these models will perform on OOD test data? We benchmark the performance on this task when looking at model accuracy on the few-shot examples, then investigate how to incorporate analysis of the models’ behavior using feature attributions to better tackle this problem. Specifically, we explore a set of factors designed to reveal model agreement with certain pathological heuristics that may indicate worse generalization capabilities. On textual entailment, paraphrase recognition, and a synthetic classification task, we show that attribution-based factors can help rank relative model OOD performance. However, accuracy on a few-shot test set is a surprisingly strong baseline, particularly when the system designer does not have in-depth prior knowledge about the domain shift.</abstract>
<identifier type="citekey">singhal-etal-2023-assessing</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-main.175</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-main.175</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>2385</start>
<end>2397</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Assessing Out-of-Domain Language Model Performance from Few Examples
%A Singhal, Prasann
%A Forristal, Jarad
%A Ye, Xi
%A Durrett, Greg
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F singhal-etal-2023-assessing
%X While pretrained language models have exhibited impressive generalization capabilities, they still behave unpredictably under certain domain shifts. In particular, a model may learn a reasoning process on in-domain training data that does not hold for out-of-domain test data. We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion: given a few target-domain examples and a set of models with similar training performance, can we understand how these models will perform on OOD test data? We benchmark the performance on this task when looking at model accuracy on the few-shot examples, then investigate how to incorporate analysis of the models’ behavior using feature attributions to better tackle this problem. Specifically, we explore a set of factors designed to reveal model agreement with certain pathological heuristics that may indicate worse generalization capabilities. On textual entailment, paraphrase recognition, and a synthetic classification task, we show that attribution-based factors can help rank relative model OOD performance. However, accuracy on a few-shot test set is a surprisingly strong baseline, particularly when the system designer does not have in-depth prior knowledge about the domain shift.
%R 10.18653/v1/2023.eacl-main.175
%U https://aclanthology.org/2023.eacl-main.175
%U https://doi.org/10.18653/v1/2023.eacl-main.175
%P 2385-2397
Markdown (Informal)
[Assessing Out-of-Domain Language Model Performance from Few Examples](https://aclanthology.org/2023.eacl-main.175) (Singhal et al., EACL 2023)
ACL