@inproceedings{camillis-etal-2023-mt,
title = "The {MT}@{BZ} corpus: machine translation {\&} legal language",
author = "De Camillis, Flavia and
Stemle, Egon W. and
Chiocchetti, Elena and
Fernicola, Francesco",
editor = "Nurminen, Mary and
Brenner, Judith and
Koponen, Maarit and
Latomaa, Sirkku and
Mikhailov, Mikhail and
Schierl, Frederike and
Ranasinghe, Tharindu and
Vanmassenhove, Eva and
Vidal, Sergi Alvarez and
Aranberri, Nora and
Nunziatini, Mara and
Escart{\'i}n, Carla Parra and
Forcada, Mikel and
Popovic, Maja and
Scarton, Carolina and
Moniz, Helena",
booktitle = "Proceedings of the 24th Annual Conference of the European Association for Machine Translation",
month = jun,
year = "2023",
address = "Tampere, Finland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2023.eamt-1.17/",
pages = "171--180",
abstract = "The paper reports on the creation, annotation and curation of the MT@BZ corpus, a bilingual (Italian{--}South Tyrolean German) corpus of machine-translated legal texts from the officially multilingual Province of Bolzano, Italy. It is the first human error-annotated corpus (using an adapted SCATE taxonomy) of machine-translated legal texts in this language combination that includes a lesser-used standard variety. The data of the project will be made available on GitHub and another repository. The output of the customized engine achieved notably better BLEU, TER and chrF2 scores than the baseline. Over 50{\%} of the segments needed no human revision due to customization. The most frequent error categories were mistranslations and bilingual (legal) terminology errors. Our contribution brings fine-grained insights to Machine translation evaluation research, as it concerns a less common language combination, a lesser-used language variety and a societally relevant specialized domain. Such results are necessary to implement and inform the use of MT in institutional contexts of smaller language communities."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="camillis-etal-2023-mt">
<titleInfo>
<title>The MT@BZ corpus: machine translation & legal language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Flavia</namePart>
<namePart type="family">De Camillis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Egon</namePart>
<namePart type="given">W</namePart>
<namePart type="family">Stemle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Chiocchetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="family">Fernicola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Brenner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarit</namePart>
<namePart type="family">Koponen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sirkku</namePart>
<namePart type="family">Latomaa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Mikhailov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederike</namePart>
<namePart type="family">Schierl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergi</namePart>
<namePart type="given">Alvarez</namePart>
<namePart type="family">Vidal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Aranberri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mara</namePart>
<namePart type="family">Nunziatini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carla</namePart>
<namePart type="given">Parra</namePart>
<namePart type="family">Escartín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Forcada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Popovic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Tampere, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper reports on the creation, annotation and curation of the MT@BZ corpus, a bilingual (Italian–South Tyrolean German) corpus of machine-translated legal texts from the officially multilingual Province of Bolzano, Italy. It is the first human error-annotated corpus (using an adapted SCATE taxonomy) of machine-translated legal texts in this language combination that includes a lesser-used standard variety. The data of the project will be made available on GitHub and another repository. The output of the customized engine achieved notably better BLEU, TER and chrF2 scores than the baseline. Over 50% of the segments needed no human revision due to customization. The most frequent error categories were mistranslations and bilingual (legal) terminology errors. Our contribution brings fine-grained insights to Machine translation evaluation research, as it concerns a less common language combination, a lesser-used language variety and a societally relevant specialized domain. Such results are necessary to implement and inform the use of MT in institutional contexts of smaller language communities.</abstract>
<identifier type="citekey">camillis-etal-2023-mt</identifier>
<location>
<url>https://aclanthology.org/2023.eamt-1.17/</url>
</location>
<part>
<date>2023-06</date>
<extent unit="page">
<start>171</start>
<end>180</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The MT@BZ corpus: machine translation & legal language
%A De Camillis, Flavia
%A Stemle, Egon W.
%A Chiocchetti, Elena
%A Fernicola, Francesco
%Y Nurminen, Mary
%Y Brenner, Judith
%Y Koponen, Maarit
%Y Latomaa, Sirkku
%Y Mikhailov, Mikhail
%Y Schierl, Frederike
%Y Ranasinghe, Tharindu
%Y Vanmassenhove, Eva
%Y Vidal, Sergi Alvarez
%Y Aranberri, Nora
%Y Nunziatini, Mara
%Y Escartín, Carla Parra
%Y Forcada, Mikel
%Y Popovic, Maja
%Y Scarton, Carolina
%Y Moniz, Helena
%S Proceedings of the 24th Annual Conference of the European Association for Machine Translation
%D 2023
%8 June
%I European Association for Machine Translation
%C Tampere, Finland
%F camillis-etal-2023-mt
%X The paper reports on the creation, annotation and curation of the MT@BZ corpus, a bilingual (Italian–South Tyrolean German) corpus of machine-translated legal texts from the officially multilingual Province of Bolzano, Italy. It is the first human error-annotated corpus (using an adapted SCATE taxonomy) of machine-translated legal texts in this language combination that includes a lesser-used standard variety. The data of the project will be made available on GitHub and another repository. The output of the customized engine achieved notably better BLEU, TER and chrF2 scores than the baseline. Over 50% of the segments needed no human revision due to customization. The most frequent error categories were mistranslations and bilingual (legal) terminology errors. Our contribution brings fine-grained insights to Machine translation evaluation research, as it concerns a less common language combination, a lesser-used language variety and a societally relevant specialized domain. Such results are necessary to implement and inform the use of MT in institutional contexts of smaller language communities.
%U https://aclanthology.org/2023.eamt-1.17/
%P 171-180
Markdown (Informal)
[The MT@BZ corpus: machine translation & legal language](https://aclanthology.org/2023.eamt-1.17/) (De Camillis et al., EAMT 2023)
ACL
- Flavia De Camillis, Egon W. Stemle, Elena Chiocchetti, and Francesco Fernicola. 2023. The MT@BZ corpus: machine translation & legal language. In Proceedings of the 24th Annual Conference of the European Association for Machine Translation, pages 171–180, Tampere, Finland. European Association for Machine Translation.