@inproceedings{bayon-sanchez-gijon-2023-social,
title = "A social media {NMT} engine for a low-resource language combination",
author = "Bay{\'o}n, Mar{\'i}a Do Campo and
S{\'a}nchez-Gij{\'o}n, Pilar",
editor = "Nurminen, Mary and
Brenner, Judith and
Koponen, Maarit and
Latomaa, Sirkku and
Mikhailov, Mikhail and
Schierl, Frederike and
Ranasinghe, Tharindu and
Vanmassenhove, Eva and
Vidal, Sergi Alvarez and
Aranberri, Nora and
Nunziatini, Mara and
Escart{\'i}n, Carla Parra and
Forcada, Mikel and
Popovic, Maja and
Scarton, Carolina and
Moniz, Helena",
booktitle = "Proceedings of the 24th Annual Conference of the European Association for Machine Translation",
month = jun,
year = "2023",
address = "Tampere, Finland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2023.eamt-1.26/",
pages = "269--274",
abstract = "The aim of this article is to present a new Neural Machine Translation (NMT) from Spanish into Galician for the social media domain that was trained with a Twitter corpus. Our main goal is to outline the methods used to build the corpus and the steps taken to train the engine in a low-resource language context. We have evalu-ated the engine performance both with regular automatic metrics and with a new methodology based on the non-inferiority process and contrasted this information with an error classification human evalua-tion conducted by professional linguists. We will present the steps carried out fol-lowing the conclusions of a previous pilot study, describe the new process followed, analyze the new engine and present the final conclusions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bayon-sanchez-gijon-2023-social">
<titleInfo>
<title>A social media NMT engine for a low-resource language combination</title>
</titleInfo>
<name type="personal">
<namePart type="given">María</namePart>
<namePart type="given">Do</namePart>
<namePart type="given">Campo</namePart>
<namePart type="family">Bayón</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pilar</namePart>
<namePart type="family">Sánchez-Gijón</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Brenner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarit</namePart>
<namePart type="family">Koponen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sirkku</namePart>
<namePart type="family">Latomaa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Mikhailov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederike</namePart>
<namePart type="family">Schierl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergi</namePart>
<namePart type="given">Alvarez</namePart>
<namePart type="family">Vidal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Aranberri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mara</namePart>
<namePart type="family">Nunziatini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carla</namePart>
<namePart type="given">Parra</namePart>
<namePart type="family">Escartín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Forcada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Popovic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Tampere, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The aim of this article is to present a new Neural Machine Translation (NMT) from Spanish into Galician for the social media domain that was trained with a Twitter corpus. Our main goal is to outline the methods used to build the corpus and the steps taken to train the engine in a low-resource language context. We have evalu-ated the engine performance both with regular automatic metrics and with a new methodology based on the non-inferiority process and contrasted this information with an error classification human evalua-tion conducted by professional linguists. We will present the steps carried out fol-lowing the conclusions of a previous pilot study, describe the new process followed, analyze the new engine and present the final conclusions.</abstract>
<identifier type="citekey">bayon-sanchez-gijon-2023-social</identifier>
<location>
<url>https://aclanthology.org/2023.eamt-1.26/</url>
</location>
<part>
<date>2023-06</date>
<extent unit="page">
<start>269</start>
<end>274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A social media NMT engine for a low-resource language combination
%A Bayón, María Do Campo
%A Sánchez-Gijón, Pilar
%Y Nurminen, Mary
%Y Brenner, Judith
%Y Koponen, Maarit
%Y Latomaa, Sirkku
%Y Mikhailov, Mikhail
%Y Schierl, Frederike
%Y Ranasinghe, Tharindu
%Y Vanmassenhove, Eva
%Y Vidal, Sergi Alvarez
%Y Aranberri, Nora
%Y Nunziatini, Mara
%Y Escartín, Carla Parra
%Y Forcada, Mikel
%Y Popovic, Maja
%Y Scarton, Carolina
%Y Moniz, Helena
%S Proceedings of the 24th Annual Conference of the European Association for Machine Translation
%D 2023
%8 June
%I European Association for Machine Translation
%C Tampere, Finland
%F bayon-sanchez-gijon-2023-social
%X The aim of this article is to present a new Neural Machine Translation (NMT) from Spanish into Galician for the social media domain that was trained with a Twitter corpus. Our main goal is to outline the methods used to build the corpus and the steps taken to train the engine in a low-resource language context. We have evalu-ated the engine performance both with regular automatic metrics and with a new methodology based on the non-inferiority process and contrasted this information with an error classification human evalua-tion conducted by professional linguists. We will present the steps carried out fol-lowing the conclusions of a previous pilot study, describe the new process followed, analyze the new engine and present the final conclusions.
%U https://aclanthology.org/2023.eamt-1.26/
%P 269-274
Markdown (Informal)
[A social media NMT engine for a low-resource language combination](https://aclanthology.org/2023.eamt-1.26/) (Bayón & Sánchez-Gijón, EAMT 2023)
ACL