Using MT for multilingual covid-19 case load prediction from social media texts
Maja Popovic, Vasudevan Nedumpozhimana, Meegan Gower, Sneha Rautmare, Nishtha Jain, John Kelleher
Abstract
In the context of an epidemiological study involving multilingual social media, this paper reports on the ability of machine translation systems to preserve content relevant for a document classification task designed to determine whether the social media text is related to covid. The results indicate that machine translation does provide a feasible basis for scaling epidemiological social media surveillance to multiple languages. Moreover, a qualitative error analysis revealed that the majority of classification errors are not caused by MT errors.- Anthology ID:
- 2023.eamt-1.45
- Volume:
- Proceedings of the 24th Annual Conference of the European Association for Machine Translation
- Month:
- June
- Year:
- 2023
- Address:
- Tampere, Finland
- Editors:
- Mary Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal, Nora Aranberri, Mara Nunziatini, Carla Parra Escartín, Mikel Forcada, Maja Popovic, Carolina Scarton, Helena Moniz
- Venue:
- EAMT
- SIG:
- Publisher:
- European Association for Machine Translation
- Note:
- Pages:
- 461–470
- Language:
- URL:
- https://aclanthology.org/2023.eamt-1.45
- DOI:
- Bibkey:
- Cite (ACL):
- Maja Popovic, Vasudevan Nedumpozhimana, Meegan Gower, Sneha Rautmare, Nishtha Jain, and John Kelleher. 2023. Using MT for multilingual covid-19 case load prediction from social media texts. In Proceedings of the 24th Annual Conference of the European Association for Machine Translation, pages 461–470, Tampere, Finland. European Association for Machine Translation.
- Cite (Informal):
- Using MT for multilingual covid-19 case load prediction from social media texts (Popovic et al., EAMT 2023)
- Copy Citation:
- PDF:
- https://aclanthology.org/2023.eamt-1.45.pdf
Export citation
@inproceedings{popovic-etal-2023-using, title = "Using {MT} for multilingual covid-19 case load prediction from social media texts", author = "Popovic, Maja and Nedumpozhimana, Vasudevan and Gower, Meegan and Rautmare, Sneha and Jain, Nishtha and Kelleher, John", editor = "Nurminen, Mary and Brenner, Judith and Koponen, Maarit and Latomaa, Sirkku and Mikhailov, Mikhail and Schierl, Frederike and Ranasinghe, Tharindu and Vanmassenhove, Eva and Vidal, Sergi Alvarez and Aranberri, Nora and Nunziatini, Mara and Escart{\'\i}n, Carla Parra and Forcada, Mikel and Popovic, Maja and Scarton, Carolina and Moniz, Helena", booktitle = "Proceedings of the 24th Annual Conference of the European Association for Machine Translation", month = jun, year = "2023", address = "Tampere, Finland", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2023.eamt-1.45", pages = "461--470", abstract = "In the context of an epidemiological study involving multilingual social media, this paper reports on the ability of machine translation systems to preserve content relevant for a document classification task designed to determine whether the social media text is related to covid. The results indicate that machine translation does provide a feasible basis for scaling epidemiological social media surveillance to multiple languages. Moreover, a qualitative error analysis revealed that the majority of classification errors are not caused by MT errors.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="popovic-etal-2023-using"> <titleInfo> <title>Using MT for multilingual covid-19 case load prediction from social media texts</title> </titleInfo> <name type="personal"> <namePart type="given">Maja</namePart> <namePart type="family">Popovic</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Vasudevan</namePart> <namePart type="family">Nedumpozhimana</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Meegan</namePart> <namePart type="family">Gower</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sneha</namePart> <namePart type="family">Rautmare</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nishtha</namePart> <namePart type="family">Jain</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">John</namePart> <namePart type="family">Kelleher</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2023-06</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 24th Annual Conference of the European Association for Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Mary</namePart> <namePart type="family">Nurminen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Judith</namePart> <namePart type="family">Brenner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Maarit</namePart> <namePart type="family">Koponen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sirkku</namePart> <namePart type="family">Latomaa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mikhail</namePart> <namePart type="family">Mikhailov</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Frederike</namePart> <namePart type="family">Schierl</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tharindu</namePart> <namePart type="family">Ranasinghe</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Eva</namePart> <namePart type="family">Vanmassenhove</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sergi</namePart> <namePart type="given">Alvarez</namePart> <namePart type="family">Vidal</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nora</namePart> <namePart type="family">Aranberri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mara</namePart> <namePart type="family">Nunziatini</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Carla</namePart> <namePart type="given">Parra</namePart> <namePart type="family">Escartín</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mikel</namePart> <namePart type="family">Forcada</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Maja</namePart> <namePart type="family">Popovic</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Carolina</namePart> <namePart type="family">Scarton</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Helena</namePart> <namePart type="family">Moniz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>European Association for Machine Translation</publisher> <place> <placeTerm type="text">Tampere, Finland</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>In the context of an epidemiological study involving multilingual social media, this paper reports on the ability of machine translation systems to preserve content relevant for a document classification task designed to determine whether the social media text is related to covid. The results indicate that machine translation does provide a feasible basis for scaling epidemiological social media surveillance to multiple languages. Moreover, a qualitative error analysis revealed that the majority of classification errors are not caused by MT errors.</abstract> <identifier type="citekey">popovic-etal-2023-using</identifier> <location> <url>https://aclanthology.org/2023.eamt-1.45</url> </location> <part> <date>2023-06</date> <extent unit="page"> <start>461</start> <end>470</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Using MT for multilingual covid-19 case load prediction from social media texts %A Popovic, Maja %A Nedumpozhimana, Vasudevan %A Gower, Meegan %A Rautmare, Sneha %A Jain, Nishtha %A Kelleher, John %Y Nurminen, Mary %Y Brenner, Judith %Y Koponen, Maarit %Y Latomaa, Sirkku %Y Mikhailov, Mikhail %Y Schierl, Frederike %Y Ranasinghe, Tharindu %Y Vanmassenhove, Eva %Y Vidal, Sergi Alvarez %Y Aranberri, Nora %Y Nunziatini, Mara %Y Escartín, Carla Parra %Y Forcada, Mikel %Y Popovic, Maja %Y Scarton, Carolina %Y Moniz, Helena %S Proceedings of the 24th Annual Conference of the European Association for Machine Translation %D 2023 %8 June %I European Association for Machine Translation %C Tampere, Finland %F popovic-etal-2023-using %X In the context of an epidemiological study involving multilingual social media, this paper reports on the ability of machine translation systems to preserve content relevant for a document classification task designed to determine whether the social media text is related to covid. The results indicate that machine translation does provide a feasible basis for scaling epidemiological social media surveillance to multiple languages. Moreover, a qualitative error analysis revealed that the majority of classification errors are not caused by MT errors. %U https://aclanthology.org/2023.eamt-1.45 %P 461-470
Markdown (Informal)
[Using MT for multilingual covid-19 case load prediction from social media texts](https://aclanthology.org/2023.eamt-1.45) (Popovic et al., EAMT 2023)
- Using MT for multilingual covid-19 case load prediction from social media texts (Popovic et al., EAMT 2023)
ACL
- Maja Popovic, Vasudevan Nedumpozhimana, Meegan Gower, Sneha Rautmare, Nishtha Jain, and John Kelleher. 2023. Using MT for multilingual covid-19 case load prediction from social media texts. In Proceedings of the 24th Annual Conference of the European Association for Machine Translation, pages 461–470, Tampere, Finland. European Association for Machine Translation.