@inproceedings{hamm-klein-2023-star,
title = "How {STAR} Transit {NXT} can help translators measure and increase their {MT} post-editing efficiency",
author = "Hamm, Julian and
Klein, Judith",
editor = "Nurminen, Mary and
Brenner, Judith and
Koponen, Maarit and
Latomaa, Sirkku and
Mikhailov, Mikhail and
Schierl, Frederike and
Ranasinghe, Tharindu and
Vanmassenhove, Eva and
Vidal, Sergi Alvarez and
Aranberri, Nora and
Nunziatini, Mara and
Escart{\'\i}n, Carla Parra and
Forcada, Mikel and
Popovic, Maja and
Scarton, Carolina and
Moniz, Helena",
booktitle = "Proceedings of the 24th Annual Conference of the European Association for Machine Translation",
month = jun,
year = "2023",
address = "Tampere, Finland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2023.eamt-1.59",
pages = "513--514",
abstract = "As machine translation (MT) is being more tightly integrated into modern CAT-based translation workflows, measuring and increasing MT efficiency has become one of the main concerns of LSPs and companies trying to optimise their processes in terms of quality and performance. When it comes to measur-ing MT efficiency, STAR{'}s CAT tool Transit NXT offers post-editing distance (PED) and MT error categorisation as two core features of Transit{'}s compre-hensive QA module. With DeepL glossa-ry integration and MT confidence scores, translators will also have access to two new features which can help them in-crease their MT post-editing efficiency.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hamm-klein-2023-star">
<titleInfo>
<title>How STAR Transit NXT can help translators measure and increase their MT post-editing efficiency</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Hamm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 24th Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="family">Brenner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarit</namePart>
<namePart type="family">Koponen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sirkku</namePart>
<namePart type="family">Latomaa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Mikhailov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederike</namePart>
<namePart type="family">Schierl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergi</namePart>
<namePart type="given">Alvarez</namePart>
<namePart type="family">Vidal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Aranberri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mara</namePart>
<namePart type="family">Nunziatini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carla</namePart>
<namePart type="given">Parra</namePart>
<namePart type="family">Escartín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Forcada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Popovic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Tampere, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As machine translation (MT) is being more tightly integrated into modern CAT-based translation workflows, measuring and increasing MT efficiency has become one of the main concerns of LSPs and companies trying to optimise their processes in terms of quality and performance. When it comes to measur-ing MT efficiency, STAR’s CAT tool Transit NXT offers post-editing distance (PED) and MT error categorisation as two core features of Transit’s compre-hensive QA module. With DeepL glossa-ry integration and MT confidence scores, translators will also have access to two new features which can help them in-crease their MT post-editing efficiency.</abstract>
<identifier type="citekey">hamm-klein-2023-star</identifier>
<location>
<url>https://aclanthology.org/2023.eamt-1.59</url>
</location>
<part>
<date>2023-06</date>
<extent unit="page">
<start>513</start>
<end>514</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How STAR Transit NXT can help translators measure and increase their MT post-editing efficiency
%A Hamm, Julian
%A Klein, Judith
%Y Nurminen, Mary
%Y Brenner, Judith
%Y Koponen, Maarit
%Y Latomaa, Sirkku
%Y Mikhailov, Mikhail
%Y Schierl, Frederike
%Y Ranasinghe, Tharindu
%Y Vanmassenhove, Eva
%Y Vidal, Sergi Alvarez
%Y Aranberri, Nora
%Y Nunziatini, Mara
%Y Escartín, Carla Parra
%Y Forcada, Mikel
%Y Popovic, Maja
%Y Scarton, Carolina
%Y Moniz, Helena
%S Proceedings of the 24th Annual Conference of the European Association for Machine Translation
%D 2023
%8 June
%I European Association for Machine Translation
%C Tampere, Finland
%F hamm-klein-2023-star
%X As machine translation (MT) is being more tightly integrated into modern CAT-based translation workflows, measuring and increasing MT efficiency has become one of the main concerns of LSPs and companies trying to optimise their processes in terms of quality and performance. When it comes to measur-ing MT efficiency, STAR’s CAT tool Transit NXT offers post-editing distance (PED) and MT error categorisation as two core features of Transit’s compre-hensive QA module. With DeepL glossa-ry integration and MT confidence scores, translators will also have access to two new features which can help them in-crease their MT post-editing efficiency.
%U https://aclanthology.org/2023.eamt-1.59
%P 513-514
Markdown (Informal)
[How STAR Transit NXT can help translators measure and increase their MT post-editing efficiency](https://aclanthology.org/2023.eamt-1.59) (Hamm & Klein, EAMT 2023)
ACL