@inproceedings{lohr-hahn-2023-dopa,
title = "{DOPA} {METER} {--} A Tool Suite for Metrical Document Profiling and Aggregation",
author = "Lohr, Christina and
Hahn, Udo",
editor = "Feng, Yansong and
Lefever, Els",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-demo.18/",
doi = "10.18653/v1/2023.emnlp-demo.18",
pages = "218--228",
abstract = "We present DOPA METER, a tool suite for the metrical investigation of written language, that provides diagnostic means for its division into discourse categories, such as registers, genres, and style. The quantitative basis of our system are 120 metrics covering a wide range of lexical, syntactic, and semantic features relevant for language profiling. The scores can be summarized, compared, and aggregated using visualization tools that can be tailored according to the users' needs. We also showcase an application scenario for DOPA METER."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lohr-hahn-2023-dopa">
<titleInfo>
<title>DOPA METER – A Tool Suite for Metrical Document Profiling and Aggregation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christina</namePart>
<namePart type="family">Lohr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Udo</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yansong</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Els</namePart>
<namePart type="family">Lefever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present DOPA METER, a tool suite for the metrical investigation of written language, that provides diagnostic means for its division into discourse categories, such as registers, genres, and style. The quantitative basis of our system are 120 metrics covering a wide range of lexical, syntactic, and semantic features relevant for language profiling. The scores can be summarized, compared, and aggregated using visualization tools that can be tailored according to the users’ needs. We also showcase an application scenario for DOPA METER.</abstract>
<identifier type="citekey">lohr-hahn-2023-dopa</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-demo.18</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-demo.18/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>218</start>
<end>228</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DOPA METER – A Tool Suite for Metrical Document Profiling and Aggregation
%A Lohr, Christina
%A Hahn, Udo
%Y Feng, Yansong
%Y Lefever, Els
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F lohr-hahn-2023-dopa
%X We present DOPA METER, a tool suite for the metrical investigation of written language, that provides diagnostic means for its division into discourse categories, such as registers, genres, and style. The quantitative basis of our system are 120 metrics covering a wide range of lexical, syntactic, and semantic features relevant for language profiling. The scores can be summarized, compared, and aggregated using visualization tools that can be tailored according to the users’ needs. We also showcase an application scenario for DOPA METER.
%R 10.18653/v1/2023.emnlp-demo.18
%U https://aclanthology.org/2023.emnlp-demo.18/
%U https://doi.org/10.18653/v1/2023.emnlp-demo.18
%P 218-228
Markdown (Informal)
[DOPA METER – A Tool Suite for Metrical Document Profiling and Aggregation](https://aclanthology.org/2023.emnlp-demo.18/) (Lohr & Hahn, EMNLP 2023)
ACL