@inproceedings{giulianelli-etal-2023-information,
title = "Information Value: Measuring Utterance Predictability as Distance from Plausible Alternatives",
author = "Giulianelli, Mario and
Wallbridge, Sarenne and
Fern{\'a}ndez, Raquel",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.343",
doi = "10.18653/v1/2023.emnlp-main.343",
pages = "5633--5653",
abstract = "We present information value, a measure which quantifies the predictability of an utterance relative to a set of plausible alternatives. We introduce a method to obtain interpretable estimates of information value using neural text generators, and exploit their psychometric predictive power to investigate the dimensions of predictability that drive human comprehension behaviour. Information value is a stronger predictor of utterance acceptability in written and spoken dialogue than aggregates of token-level surprisal and it is complementary to surprisal for predicting eye-tracked reading times.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giulianelli-etal-2023-information">
<titleInfo>
<title>Information Value: Measuring Utterance Predictability as Distance from Plausible Alternatives</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarenne</namePart>
<namePart type="family">Wallbridge</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present information value, a measure which quantifies the predictability of an utterance relative to a set of plausible alternatives. We introduce a method to obtain interpretable estimates of information value using neural text generators, and exploit their psychometric predictive power to investigate the dimensions of predictability that drive human comprehension behaviour. Information value is a stronger predictor of utterance acceptability in written and spoken dialogue than aggregates of token-level surprisal and it is complementary to surprisal for predicting eye-tracked reading times.</abstract>
<identifier type="citekey">giulianelli-etal-2023-information</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.343</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.343</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>5633</start>
<end>5653</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Information Value: Measuring Utterance Predictability as Distance from Plausible Alternatives
%A Giulianelli, Mario
%A Wallbridge, Sarenne
%A Fernández, Raquel
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F giulianelli-etal-2023-information
%X We present information value, a measure which quantifies the predictability of an utterance relative to a set of plausible alternatives. We introduce a method to obtain interpretable estimates of information value using neural text generators, and exploit their psychometric predictive power to investigate the dimensions of predictability that drive human comprehension behaviour. Information value is a stronger predictor of utterance acceptability in written and spoken dialogue than aggregates of token-level surprisal and it is complementary to surprisal for predicting eye-tracked reading times.
%R 10.18653/v1/2023.emnlp-main.343
%U https://aclanthology.org/2023.emnlp-main.343
%U https://doi.org/10.18653/v1/2023.emnlp-main.343
%P 5633-5653
Markdown (Informal)
[Information Value: Measuring Utterance Predictability as Distance from Plausible Alternatives](https://aclanthology.org/2023.emnlp-main.343) (Giulianelli et al., EMNLP 2023)
ACL