@inproceedings{li-etal-2023-compressing,
title = "Compressing Context to Enhance Inference Efficiency of Large Language Models",
author = "Li, Yucheng and
Dong, Bo and
Guerin, Frank and
Lin, Chenghua",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.391/",
doi = "10.18653/v1/2023.emnlp-main.391",
pages = "6342--6353",
abstract = "Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM`s fixed context length. This paper proposes a method called \textit{Selective Context} that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50{\%} reduction in context cost, resulting in a 36{\%} reduction in inference memory usage and a 32{\%} reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2023-compressing">
<titleInfo>
<title>Compressing Context to Enhance Inference Efficiency of Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yucheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Guerin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM‘s fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50% reduction in context cost, resulting in a 36% reduction in inference memory usage and a 32% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.</abstract>
<identifier type="citekey">li-etal-2023-compressing</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.391</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.391/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>6342</start>
<end>6353</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Compressing Context to Enhance Inference Efficiency of Large Language Models
%A Li, Yucheng
%A Dong, Bo
%A Guerin, Frank
%A Lin, Chenghua
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F li-etal-2023-compressing
%X Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM‘s fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50% reduction in context cost, resulting in a 36% reduction in inference memory usage and a 32% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.
%R 10.18653/v1/2023.emnlp-main.391
%U https://aclanthology.org/2023.emnlp-main.391/
%U https://doi.org/10.18653/v1/2023.emnlp-main.391
%P 6342-6353
Markdown (Informal)
[Compressing Context to Enhance Inference Efficiency of Large Language Models](https://aclanthology.org/2023.emnlp-main.391/) (Li et al., EMNLP 2023)
ACL