@inproceedings{dwivedi-etal-2023-eticor,
title = "{E}ti{C}or: Corpus for Analyzing {LLM}s for Etiquettes",
author = "Dwivedi, Ashutosh and
Lavania, Pradhyumna and
Modi, Ashutosh",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.428/",
doi = "10.18653/v1/2023.emnlp-main.428",
pages = "6921--6931",
abstract = "Etiquettes are an essential ingredient of day-to-day interactions among people. Moreover, etiquettes are region-specific, and etiquettes in one region might contradict those in other regions. In this paper, we propose EtiCor, an Etiquettes Corpus, having texts about social norms from five different regions across the globe. The corpus provides a test bed for evaluating LLMs for knowledge and understanding of region-specific etiquettes. Additionally, we propose the task of Etiquette Sensitivity. We experiment with state-of-the-art LLMs (Delphi, Falcon40B, and GPT-3.5). Initial results indicate that LLMs, mostly fail to understand etiquettes from regions from non-Western world."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dwivedi-etal-2023-eticor">
<titleInfo>
<title>EtiCor: Corpus for Analyzing LLMs for Etiquettes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Dwivedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradhyumna</namePart>
<namePart type="family">Lavania</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashutosh</namePart>
<namePart type="family">Modi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Etiquettes are an essential ingredient of day-to-day interactions among people. Moreover, etiquettes are region-specific, and etiquettes in one region might contradict those in other regions. In this paper, we propose EtiCor, an Etiquettes Corpus, having texts about social norms from five different regions across the globe. The corpus provides a test bed for evaluating LLMs for knowledge and understanding of region-specific etiquettes. Additionally, we propose the task of Etiquette Sensitivity. We experiment with state-of-the-art LLMs (Delphi, Falcon40B, and GPT-3.5). Initial results indicate that LLMs, mostly fail to understand etiquettes from regions from non-Western world.</abstract>
<identifier type="citekey">dwivedi-etal-2023-eticor</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.428</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.428/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>6921</start>
<end>6931</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EtiCor: Corpus for Analyzing LLMs for Etiquettes
%A Dwivedi, Ashutosh
%A Lavania, Pradhyumna
%A Modi, Ashutosh
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F dwivedi-etal-2023-eticor
%X Etiquettes are an essential ingredient of day-to-day interactions among people. Moreover, etiquettes are region-specific, and etiquettes in one region might contradict those in other regions. In this paper, we propose EtiCor, an Etiquettes Corpus, having texts about social norms from five different regions across the globe. The corpus provides a test bed for evaluating LLMs for knowledge and understanding of region-specific etiquettes. Additionally, we propose the task of Etiquette Sensitivity. We experiment with state-of-the-art LLMs (Delphi, Falcon40B, and GPT-3.5). Initial results indicate that LLMs, mostly fail to understand etiquettes from regions from non-Western world.
%R 10.18653/v1/2023.emnlp-main.428
%U https://aclanthology.org/2023.emnlp-main.428/
%U https://doi.org/10.18653/v1/2023.emnlp-main.428
%P 6921-6931
Markdown (Informal)
[EtiCor: Corpus for Analyzing LLMs for Etiquettes](https://aclanthology.org/2023.emnlp-main.428/) (Dwivedi et al., EMNLP 2023)
ACL
- Ashutosh Dwivedi, Pradhyumna Lavania, and Ashutosh Modi. 2023. EtiCor: Corpus for Analyzing LLMs for Etiquettes. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6921–6931, Singapore. Association for Computational Linguistics.