@inproceedings{pham-etal-2023-select,
title = "Select, Prompt, Filter: Distilling Large Language Models for Summarizing Conversations",
author = "Pham, Minh-Quang and
Indurthi, Sathish and
Chollampatt, Shamil and
Turchi, Marco",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.753/",
doi = "10.18653/v1/2023.emnlp-main.753",
pages = "12257--12265",
abstract = "Large language models (LLMs) like ChatGPT can be expensive to train, deploy, and use for specific natural language generation tasks such as text summarization and for certain domains. A promising alternative is to fine-tune relatively smaller language models (LMs) on a particular task using high-quality, in-domain datasets. However, it can be prohibitively expensive to get such high-quality training data. This issue has been mitigated by generating weakly supervised data via knowledge distillation (KD) of LLMs. We propose a three-step approach to distill ChatGPT and fine-tune smaller LMs for summarizing forum conversations. More specifically, we design a method to selectively sample a large unannotated corpus of forum conversation using a semantic similarity metric. Then, we use the same metric to retrieve suitable prompts for ChatGPT from a small annotated validation set in the same domain. The generated dataset is then filtered to remove low-quality instances. Our proposed select-prompt-filter KD approach leads to significant improvements of up to 6.6 ROUGE-2 score by leveraging sufficient in-domain pseudo-labeled data over a standard KD approach given the same size of training data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pham-etal-2023-select">
<titleInfo>
<title>Select, Prompt, Filter: Distilling Large Language Models for Summarizing Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minh-Quang</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sathish</namePart>
<namePart type="family">Indurthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shamil</namePart>
<namePart type="family">Chollampatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Turchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) like ChatGPT can be expensive to train, deploy, and use for specific natural language generation tasks such as text summarization and for certain domains. A promising alternative is to fine-tune relatively smaller language models (LMs) on a particular task using high-quality, in-domain datasets. However, it can be prohibitively expensive to get such high-quality training data. This issue has been mitigated by generating weakly supervised data via knowledge distillation (KD) of LLMs. We propose a three-step approach to distill ChatGPT and fine-tune smaller LMs for summarizing forum conversations. More specifically, we design a method to selectively sample a large unannotated corpus of forum conversation using a semantic similarity metric. Then, we use the same metric to retrieve suitable prompts for ChatGPT from a small annotated validation set in the same domain. The generated dataset is then filtered to remove low-quality instances. Our proposed select-prompt-filter KD approach leads to significant improvements of up to 6.6 ROUGE-2 score by leveraging sufficient in-domain pseudo-labeled data over a standard KD approach given the same size of training data.</abstract>
<identifier type="citekey">pham-etal-2023-select</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.753</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.753/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>12257</start>
<end>12265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Select, Prompt, Filter: Distilling Large Language Models for Summarizing Conversations
%A Pham, Minh-Quang
%A Indurthi, Sathish
%A Chollampatt, Shamil
%A Turchi, Marco
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F pham-etal-2023-select
%X Large language models (LLMs) like ChatGPT can be expensive to train, deploy, and use for specific natural language generation tasks such as text summarization and for certain domains. A promising alternative is to fine-tune relatively smaller language models (LMs) on a particular task using high-quality, in-domain datasets. However, it can be prohibitively expensive to get such high-quality training data. This issue has been mitigated by generating weakly supervised data via knowledge distillation (KD) of LLMs. We propose a three-step approach to distill ChatGPT and fine-tune smaller LMs for summarizing forum conversations. More specifically, we design a method to selectively sample a large unannotated corpus of forum conversation using a semantic similarity metric. Then, we use the same metric to retrieve suitable prompts for ChatGPT from a small annotated validation set in the same domain. The generated dataset is then filtered to remove low-quality instances. Our proposed select-prompt-filter KD approach leads to significant improvements of up to 6.6 ROUGE-2 score by leveraging sufficient in-domain pseudo-labeled data over a standard KD approach given the same size of training data.
%R 10.18653/v1/2023.emnlp-main.753
%U https://aclanthology.org/2023.emnlp-main.753/
%U https://doi.org/10.18653/v1/2023.emnlp-main.753
%P 12257-12265
Markdown (Informal)
[Select, Prompt, Filter: Distilling Large Language Models for Summarizing Conversations](https://aclanthology.org/2023.emnlp-main.753/) (Pham et al., EMNLP 2023)
ACL