@inproceedings{wu-etal-2023-designing,
title = "Designing, Evaluating, and Learning from Humans Interacting with {NLP} Models",
author = "Wu, Tongshuang and
Yang, Diyi and
Santy, Sebastin",
editor = "Zhang, Qi and
Sajjad, Hassan",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-tutorial.3/",
doi = "10.18653/v1/2023.emnlp-tutorial.3",
pages = "13--18",
abstract = "The rapid advancement of natural language processing (NLP) research has led to various applications spanning a wide range of domains that require models to interact with humans {--} e.g., chatbots responding to human inquiries, machine translation systems assisting human translators, designers prompting Large Language Models for co-creation or prototyping AI-infused applications, etc. In these cases, humans interaction is key to the success of NLP applications; any potential misconceptions or differences might lead to error cascades at the subsequent stages. Such interaction involves a lot of design choices around models, e.g. the sensitivity of interfaces, the impact of design choice and evaluation questions, etc. This tutorial aims to provide a systematic and up-to-date overview of key considerations and effective approaches for studying human-NLP model interactions. Our tutorial will focus specifically on the scenario where end users {--} lay people and domain experts who have access to NLP models but are less familiar with NLP techniques {--} use or collaborate with deployed models. Throughout the tutorial, we will use five case studies (on classifier-assisted decision making, machine-aided translation, dialog systems, and prompting) to cover three major themes: (1) how to conduct human-in-the-loop usability evaluations to ensure that models are capable of interacting with humans; (2) how to design user interfaces (UIs) and interaction mechanisms that provide end users with easy access to NLP models; (3) how to learn and improve NLP models through the human interactions. We will use best practices from HCI to ground our discussion, and will highlight current challenges and future directions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2023-designing">
<titleInfo>
<title>Designing, Evaluating, and Learning from Humans Interacting with NLP Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tongshuang</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastin</namePart>
<namePart type="family">Santy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The rapid advancement of natural language processing (NLP) research has led to various applications spanning a wide range of domains that require models to interact with humans – e.g., chatbots responding to human inquiries, machine translation systems assisting human translators, designers prompting Large Language Models for co-creation or prototyping AI-infused applications, etc. In these cases, humans interaction is key to the success of NLP applications; any potential misconceptions or differences might lead to error cascades at the subsequent stages. Such interaction involves a lot of design choices around models, e.g. the sensitivity of interfaces, the impact of design choice and evaluation questions, etc. This tutorial aims to provide a systematic and up-to-date overview of key considerations and effective approaches for studying human-NLP model interactions. Our tutorial will focus specifically on the scenario where end users – lay people and domain experts who have access to NLP models but are less familiar with NLP techniques – use or collaborate with deployed models. Throughout the tutorial, we will use five case studies (on classifier-assisted decision making, machine-aided translation, dialog systems, and prompting) to cover three major themes: (1) how to conduct human-in-the-loop usability evaluations to ensure that models are capable of interacting with humans; (2) how to design user interfaces (UIs) and interaction mechanisms that provide end users with easy access to NLP models; (3) how to learn and improve NLP models through the human interactions. We will use best practices from HCI to ground our discussion, and will highlight current challenges and future directions.</abstract>
<identifier type="citekey">wu-etal-2023-designing</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-tutorial.3</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-tutorial.3/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>13</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Designing, Evaluating, and Learning from Humans Interacting with NLP Models
%A Wu, Tongshuang
%A Yang, Diyi
%A Santy, Sebastin
%Y Zhang, Qi
%Y Sajjad, Hassan
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F wu-etal-2023-designing
%X The rapid advancement of natural language processing (NLP) research has led to various applications spanning a wide range of domains that require models to interact with humans – e.g., chatbots responding to human inquiries, machine translation systems assisting human translators, designers prompting Large Language Models for co-creation or prototyping AI-infused applications, etc. In these cases, humans interaction is key to the success of NLP applications; any potential misconceptions or differences might lead to error cascades at the subsequent stages. Such interaction involves a lot of design choices around models, e.g. the sensitivity of interfaces, the impact of design choice and evaluation questions, etc. This tutorial aims to provide a systematic and up-to-date overview of key considerations and effective approaches for studying human-NLP model interactions. Our tutorial will focus specifically on the scenario where end users – lay people and domain experts who have access to NLP models but are less familiar with NLP techniques – use or collaborate with deployed models. Throughout the tutorial, we will use five case studies (on classifier-assisted decision making, machine-aided translation, dialog systems, and prompting) to cover three major themes: (1) how to conduct human-in-the-loop usability evaluations to ensure that models are capable of interacting with humans; (2) how to design user interfaces (UIs) and interaction mechanisms that provide end users with easy access to NLP models; (3) how to learn and improve NLP models through the human interactions. We will use best practices from HCI to ground our discussion, and will highlight current challenges and future directions.
%R 10.18653/v1/2023.emnlp-tutorial.3
%U https://aclanthology.org/2023.emnlp-tutorial.3/
%U https://doi.org/10.18653/v1/2023.emnlp-tutorial.3
%P 13-18
Markdown (Informal)
[Designing, Evaluating, and Learning from Humans Interacting with NLP Models](https://aclanthology.org/2023.emnlp-tutorial.3/) (Wu et al., EMNLP 2023)
ACL